AN (Formula presented)-MOTIVIC v1-SELF-MAP OF PERIODICITY 1

Prasit Bhattacharya, Bertrand Guillou, Ang Li

Research output: Contribution to journalArticlepeer-review

Abstract

We consider a nontrivial action of C2 on the type 1 spectrum Y: = M2(1) ^ C(n), which is well-known for admitting a 1-periodic v1-self-map. The resultant finite C2-equivariant spectrum yC2 can also be viewed as the complex points of a finite (Formula presented)-motivic spectrum (Formula presented). In this paper, we show that one of the 1-periodic v1-self-maps of y can be lifted to a self-map of yC2 as well as (Formula presented). Further, the cofiber of the self-map of (Formula presented) is a realization of the subalgebra (Formula presented) (1) of the R-motivic Steenrod algebra. We also show that the C2-equivariant self-map is nilpotent on the geometric fixed-points of yC2.

Original languageEnglish
Pages (from-to)299-324
Number of pages26
JournalHomology, Homotopy and Applications
Volume24
Issue number1
DOIs
StatePublished - 2022

Bibliographical note

Funding Information:
B. Guillou and A. Li were supported by NSF grants DMS-1710379 and DMS-2003204. Received October 30, 2020, revised February 22, 2021; published on April 13, 2022. 2010 Mathematics Subject Classification: 14F42, 55Q51, 55Q91. Key words and phrases: self-map, motivic homotopy, equivariant homotopy. Article available at http://dx.doi.org/10.4310/HHA.2022.v24.n1.a15 Copyright © 2022, Prasit Bhattacharya, Bertrand Guillou and Ang Li. Permission to copy for private use granted.

Publisher Copyright:
© 2022. Prasit Bhattacharya, Bertrand Guillou and Ang Li. All Rights Reserved.

Keywords

  • equivariant homotopy
  • motivic homotopy
  • self-map

ASJC Scopus subject areas

  • Mathematics (miscellaneous)

Fingerprint

Dive into the research topics of 'AN (Formula presented)-MOTIVIC v1-SELF-MAP OF PERIODICITY 1'. Together they form a unique fingerprint.

Cite this