An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

The effect of nitrate on the short-term hypoxic response and recovery of flooded mature maize roots has been investigated in vivo by 1H and 31P NMR and in vitro by 1H NMR and gas chromatography-mass spectrometry. Employing 1H NMR in addition to 31P NMR extended the number of identifiable compounds in vivo from 4 to 15, while in vitro two-dimensional NMR and gas chromatography-mass spectrometry aided rigorous in vivo 1H NMR resonance assignments and quantitation of 24 compounds. In the absence of nitrate, the concentrations of key metabolites including alanine, ethanol, γ-aminobutyrate, lactate, succinate, and sucrose changed during 8 h of hypoxia in a manner consistent with reduced tricarboxylic acid cycle activity and diversion to glycolytic fermentation. The pH drop in the cytoplasm during hypoxia was rapid, about 0.2 unit, and diminished quickly upon recovery. Rapid recovery of ethanol, succinate, and sucrose levels was also observed, which indicates a return to normal aerobic metabolism. Although the hypoxic response itself, including pH, was not greatly affected by the presence of nitrate, nitrate reduced the amount of fermentation end products produced, helped maintain a higher free NTP concentration during hypoxia, and increased the rate of overall recovery from hypoxia. These findings suggest the presence of a nitrate-induced maintenance-level respiration in hypoxic maize roots, which helps explain the protection imparted by nitrate to flooded hypoxic maize plants.

Original languageEnglish
Pages (from-to)592-606
Number of pages15
JournalArchives of Biochemistry and Biophysics
Volume266
Issue number2
DOIs
StatePublished - Nov 1 1988

Bibliographical note

Funding Information:
in part by NIH and the California

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots'. Together they form a unique fingerprint.

Cite this