An investigation of dominant flow features in rotating turbulent pipe flows

Jefferson Davis, Sparsh Ganju, Anirudh Venkatesh, Sean Bailey, Christoph Brehm

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Rotating and swirling turbulence comprises an important class of turbulent flows, not only due to the complex physics that occur, but also due to their relevance to many engineering applications, such as combustion, cyclone separation, mixing, etc. In these types of flows, rotation strongly affects the characteristics and structure of turbulence. The underlying turbulent flow phenomena are complex and currently not well understood. The axially rotating pipe flow is a well-suited prototypical case for studying rotation effects in turbulence due to its simple geometry and the ability to be reproduced experimentally in a controlled environment. By examining the complex interaction of turbulent structures within rotating turbulent pipe flow, insight can be gained into the behavior of rotating flows relevant to engineering applications. Direct numerical simulations are conducted at a bulk Reynolds number of ReD = 19,000 with rotation numbers ranging from N = 0 to 3. In addition to providing turbulence statistics, proper orthogonal decomposition is used to identify the relevant (highest energy) modes of the flow and obtain an understanding about the coherence in the flow.

Original languageEnglish
Title of host publicationAIAA Scitech 2020 Forum
StatePublished - 2020
EventAIAA Scitech Forum, 2020 - Orlando, United States
Duration: Jan 6 2020Jan 10 2020

Publication series

NameAIAA Scitech 2020 Forum
Volume1 PartF


ConferenceAIAA Scitech Forum, 2020
Country/TerritoryUnited States

Bibliographical note

Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

ASJC Scopus subject areas

  • Aerospace Engineering


Dive into the research topics of 'An investigation of dominant flow features in rotating turbulent pipe flows'. Together they form a unique fingerprint.

Cite this