An iterative method for fast mesh denoising

Shuhua Lai, Fuhua Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A new approach for removing noises from a corrupted 3D model (mesh or surface) of arbitrary topology is presented. The basic idea is to transform a space domain model into a frequency-like domain representation and achieve denoising by low pass filtering. The transformation from space domain to frequency domain is done by decomposing the 3D model into an infinite series of meshes of the same topology but less magnitude so that each mesh represents part of the information of the given model, with some meshes containing more information on overall shape while others containing more on subtle details. The transformation process does not require setting up any linear systems, nor any matrix computation, but is done by iteratively moving vertices of the given mesh locally until a smooth model with noises properly removed is reached. The iterative process converges at an exponential rate. Therefore the new iterative method is very fast and can be used for meshes with large number of vertices. The mesh decomposition scheme is obtained using the concept of Catmull-Clark subdivision surfaces, but the same idea can be applied to other subdivision schemes as well. Some test results obtained using this method are included. They show that the iterative method can achieve visually pleasant resulting models with noises properly removed.

Original languageEnglish
Title of host publicationAdvances in Visual Computing - 4th International Symposium, ISVC 2008, Proceedings
Pages1034-1043
Number of pages10
EditionPART 2
DOIs
StatePublished - 2008
Event4th International Symposium on Visual Computing, ISVC 2008 - Las Vegas, NV, United States
Duration: Dec 1 2008Dec 3 2008

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume5359 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference4th International Symposium on Visual Computing, ISVC 2008
Country/TerritoryUnited States
CityLas Vegas, NV
Period12/1/0812/3/08

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'An iterative method for fast mesh denoising'. Together they form a unique fingerprint.

Cite this