An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission

Marcelo I. Guzman

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


The fast spread of coronavirus disease 2019 (COVID-19) constitutes a worldwide challenge to the public health, educational and trade systems, affecting the overall well-being of human societies. The high transmission and mortality rates of this virus, and the unavailability of a vaccine or treatment, resulted in the decision of multiple governments to enact measures of social distancing. Such measures can reduce the exposure to bioaerosols, which can result in pathogen deposition in the respiratory tract of the host causing disease and an immunological response. Thus, it is important to consider the validity of the proposal for keeping a distance of at least 2 m from other persons to avoid the spread of COVID-19. This work reviews the effect of aerodynamic diameter (size) of particles carrying RNA copies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A SARS-CoV-2 carrier person talking, sneezing or coughing at distance of 2 m can still provide a pathogenic bioaerosol load with submicron particles that remain viable in air for up to 3 h for exposure of healthy persons near and far from the source in a stagnant environment. The deposited bioaerosol creates contaminated surfaces, which if touched can act as a path to introduce the pathogen by mouth, nose or eyes and cause disease.

Original languageEnglish
Pages (from-to)257-266
Number of pages10
JournalInternational Journal of Health Planning and Management
Issue number2
StatePublished - Mar 2021

Bibliographical note

Publisher Copyright:
© 2020 The Authors. The International Journal of Health Planning and Management published by John Wiley & Sons Ltd.


  • COVID-19
  • SARS-CoV-2
  • aerodynamic size
  • bioaerosol
  • infection
  • social distancing
  • virus

ASJC Scopus subject areas

  • Health Policy


Dive into the research topics of 'An overview of the effect of bioaerosol size in coronavirus disease 2019 transmission'. Together they form a unique fingerprint.

Cite this