TY - JOUR
T1 - Analysis of genetic variants associated with levels of immune modulating proteins for impact on alzheimer’s disease risk reveal a potential role for siglec14
AU - Shaw, Benjamin C.
AU - Katsumata, Yuriko
AU - Simpson, James F.
AU - Fardo, David W.
AU - Estus, Steven
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7
Y1 - 2021/7
N2 - Genome-wide association studies (GWAS) have identified immune-related genes as risk factors for Alzheimer’s disease (AD), including TREM2 and CD33, frequently passing a stringent false-discovery rate. These genes either encode or signal through immunomodulatory tyrosine-phosphorylated inhibitory motifs (ITIMs) or activation motifs (ITAMs) and govern processes critical to AD pathology, such as inflammation and amyloid phagocytosis. To investigate whether additional ITIM and ITAM-containing family members may contribute to AD risk and be overlooked due to the stringent multiple testing in GWAS, we combined protein quantitative trait loci (pQTL) data from a recent plasma proteomics study with AD associations in a recent GWAS. We found that pQTLs for genes encoding ITIM/ITAM family members were more frequently associated with AD than those for non-ITIM/ITAM genes. Further testing of one family member, SIGLEC14 which encodes an ITAM, uncovered substantial copy number variations, identified an SNP as a proxy for gene deletion, and found that gene expression correlates significantly with gene deletion. We also found that SIGLEC14 deletion increases the expression of SIGLEC5, an ITIM. We conclude that many genes in this ITIM/ITAM family likely impact AD risk, and that complex genetics including copy number variation, opposing function of encoded proteins, and coupled gene expression may mask these AD risk associations at the genome-wide level.
AB - Genome-wide association studies (GWAS) have identified immune-related genes as risk factors for Alzheimer’s disease (AD), including TREM2 and CD33, frequently passing a stringent false-discovery rate. These genes either encode or signal through immunomodulatory tyrosine-phosphorylated inhibitory motifs (ITIMs) or activation motifs (ITAMs) and govern processes critical to AD pathology, such as inflammation and amyloid phagocytosis. To investigate whether additional ITIM and ITAM-containing family members may contribute to AD risk and be overlooked due to the stringent multiple testing in GWAS, we combined protein quantitative trait loci (pQTL) data from a recent plasma proteomics study with AD associations in a recent GWAS. We found that pQTLs for genes encoding ITIM/ITAM family members were more frequently associated with AD than those for non-ITIM/ITAM genes. Further testing of one family member, SIGLEC14 which encodes an ITAM, uncovered substantial copy number variations, identified an SNP as a proxy for gene deletion, and found that gene expression correlates significantly with gene deletion. We also found that SIGLEC14 deletion increases the expression of SIGLEC5, an ITIM. We conclude that many genes in this ITIM/ITAM family likely impact AD risk, and that complex genetics including copy number variation, opposing function of encoded proteins, and coupled gene expression may mask these AD risk associations at the genome-wide level.
KW - CNV
KW - Copy number variation
KW - GWAS
KW - ITAM
KW - ITIM
KW - SIGLEC14
KW - SIGLEC5
UR - http://www.scopus.com/inward/record.url?scp=85110185979&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110185979&partnerID=8YFLogxK
U2 - 10.3390/genes12071008
DO - 10.3390/genes12071008
M3 - Article
C2 - 34208838
AN - SCOPUS:85110185979
SN - 2073-4425
VL - 12
JO - Genes
JF - Genes
IS - 7
M1 - 1008
ER -