TY - JOUR
T1 - Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus
AU - Prado, L.
AU - Lombó, F.
AU - Braña, A. F.
AU - Méndez, C.
AU - Rohr, J.
AU - Salas, J. A.
PY - 1999
Y1 - 1999
N2 - Mithramycin is an aromatic antitumour polyketide synthesized by Streptomyces argillaceus. Two chromosomal regions located upstream and downstream of the locus for the mithramycin type II polyketide synthase were cloned and sequenced. Analysis of the sequence revealed the presence of eight genes encoding three oxygenases (mtmOI, mtmOII and mtmOIII), three reductases (mtmTI, mtmTII and mtmTIII), a cyclase (mtmY) and an acyl CoA ligase (mtmL). The three oxygenase genes were each inactivated by gene replacement. Inactivation of one of them (mtmOII) generated a non-producing mutant, while inactivation of the other two (mtmOI and mtmOIII) did not affect the biosynthesis of mithramycin. The mtmOII gene may code for an oxygenase responsible for the introduction of oxygen atoms at early steps in the biosynthesis of mithramycin leading to 4-demethylpremithramycinone. One of the reductases may be responsible for reductive cleavage of an intermediate from an enzyme and another for the reduction of a keto group in the side-chain of the mithramycin aglycon moiety. A hypothetical biosynthetic pathway showing in particular the involvement of oxygenase MtmOII and of various other gene products in mithramycin biosynthesis is proposed.
AB - Mithramycin is an aromatic antitumour polyketide synthesized by Streptomyces argillaceus. Two chromosomal regions located upstream and downstream of the locus for the mithramycin type II polyketide synthase were cloned and sequenced. Analysis of the sequence revealed the presence of eight genes encoding three oxygenases (mtmOI, mtmOII and mtmOIII), three reductases (mtmTI, mtmTII and mtmTIII), a cyclase (mtmY) and an acyl CoA ligase (mtmL). The three oxygenase genes were each inactivated by gene replacement. Inactivation of one of them (mtmOII) generated a non-producing mutant, while inactivation of the other two (mtmOI and mtmOIII) did not affect the biosynthesis of mithramycin. The mtmOII gene may code for an oxygenase responsible for the introduction of oxygen atoms at early steps in the biosynthesis of mithramycin leading to 4-demethylpremithramycinone. One of the reductases may be responsible for reductive cleavage of an intermediate from an enzyme and another for the reduction of a keto group in the side-chain of the mithramycin aglycon moiety. A hypothetical biosynthetic pathway showing in particular the involvement of oxygenase MtmOII and of various other gene products in mithramycin biosynthesis is proposed.
KW - Acyl CoA ligase
KW - Ketoreductases
KW - Loading enzyme
KW - Oxygenases
KW - Polyketides
UR - http://www.scopus.com/inward/record.url?scp=0033036925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033036925&partnerID=8YFLogxK
U2 - 10.1007/s004380050960
DO - 10.1007/s004380050960
M3 - Article
C2 - 10102355
AN - SCOPUS:0033036925
SN - 0026-8925
VL - 261
SP - 216
EP - 225
JO - Molecular and General Genetics
JF - Molecular and General Genetics
IS - 2
ER -