TY - JOUR

T1 - Analyzing power for the O16(p,n)F16(4-,6.37 MeV) reaction at 134 MeV

AU - Madey, R.

AU - Fazely, A.

AU - Anderson, B. D.

AU - Baldwin, A. R.

AU - Kalenda, A. M.

AU - McCarthy, R. J.

AU - Tandy, P. C.

AU - Watson, J. W.

AU - Bertozzi, W.

AU - Buti, T.

AU - Finn, M.

AU - Kovash, M.

AU - Pugh, B.

AU - Foster, C. C.

N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.

PY - 1982

Y1 - 1982

N2 - We measured the analyzing power for the O16(p,n)F16 (4-,6.37 MeV) reaction at 134.0 MeV and the differential cross section for the same reaction at 135.2 MeV. The shape of the cross section for the transition to this unnatural parity stretched state is described well by a distorted-wave impulse-approximation calculation using a (d52,p32-1)4- configuration and the effective interaction derived by Love and Franey from nucleon-nucleon phase shifts. The analyzing power from this calculation reproduces all of the qualitative features of the data and supports the use of the impulse approximation as an excellent starting point for describing the reaction mechanism. Quantitative agreement between the experimental and theoretical analyzing power can be improved by eliminating the imaginary tensor term of this interaction and taking the real part to be that derived by Love from the Sussex matrix elements. The sensitivity of the calculations to the choice of optical potentials and the importance of spin-orbit distortion is explored. NUCLEAR REACTIONS O16(p,n)F16, E=134 MeV; measured neutron spectra at 12 angles between =0° and 62.9°; extracted () and A() to J=4-,6.37 MeV state of F16. Compared angular distributions of () and A() with calculations based on a nucleon-nucleon effective interaction.

AB - We measured the analyzing power for the O16(p,n)F16 (4-,6.37 MeV) reaction at 134.0 MeV and the differential cross section for the same reaction at 135.2 MeV. The shape of the cross section for the transition to this unnatural parity stretched state is described well by a distorted-wave impulse-approximation calculation using a (d52,p32-1)4- configuration and the effective interaction derived by Love and Franey from nucleon-nucleon phase shifts. The analyzing power from this calculation reproduces all of the qualitative features of the data and supports the use of the impulse approximation as an excellent starting point for describing the reaction mechanism. Quantitative agreement between the experimental and theoretical analyzing power can be improved by eliminating the imaginary tensor term of this interaction and taking the real part to be that derived by Love from the Sussex matrix elements. The sensitivity of the calculations to the choice of optical potentials and the importance of spin-orbit distortion is explored. NUCLEAR REACTIONS O16(p,n)F16, E=134 MeV; measured neutron spectra at 12 angles between =0° and 62.9°; extracted () and A() to J=4-,6.37 MeV state of F16. Compared angular distributions of () and A() with calculations based on a nucleon-nucleon effective interaction.

UR - http://www.scopus.com/inward/record.url?scp=27744522811&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27744522811&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.25.1715

DO - 10.1103/PhysRevC.25.1715

M3 - Article

AN - SCOPUS:27744522811

SN - 0556-2813

VL - 25

SP - 1715

EP - 1721

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

IS - 4

ER -