TY - JOUR
T1 - Antimicrobial protein REG3A and signaling networks are predictive of stroke outcomes
AU - Sands, Madison
AU - Frank, Jacqueline A.
AU - Maglinger, Benton
AU - McLouth, Christopher J.
AU - Trout, Amanda L.
AU - Turchan-Cholewo, Jadwiga
AU - Stowe, Ann M.
AU - Fraser, Justin
AU - Pennypacker, Keith R.
N1 - Publisher Copyright:
© 2021 International Society for Neurochemistry
PY - 2022/1
Y1 - 2022/1
N2 - Regenerating Family Member 3 Alpha (REG3A) is a multifunctional protein with antimicrobial activity, and primarily secreted by the intestine and pancreas. Studies have shown an increased expression of REG3A in systemic inflammatory responses to acute injury and infection, but studies investigating REG3A during the pathogenesis of ischemic stroke are limited. The aims of this study were to examine the associations between arterial expression of REG3A and other arterial inflammatory proteins implicated in stroke pathogenesis, as well as associations between REG3A and markers of poor outcome for ischemic stroke. The University of Kentucky Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol (clinicaltrials.gov NCT03153683) utilizes thrombectomy to isolate intracranial arterial blood (i.e. distal to thrombus) and systemic arterial blood (i.e. carotid). Samples were analyzed by Olink Proteomics for N = 42 subjects. Statistical analyses of plasma proteins included 2-sample t-tests, spearman and biserial correlations, and robust regression models to elucidate network signaling and association to clinical outcomes. Results indicated that levels of systemic REG3A were positively correlated with inflammatory proteins interleukin IL6 (R = 0.344, p = 0.030) and IL17C (R = 0.468, p = 0.002). 2-sided t- tests examining differences of systemic REG3A within quartiles of NIHSS admission score depicted significant differences between quartiles. Those with NIHSS scores corresponding to moderate and moderate-severe neurofunctional deficits had significantly higher levels of systemic REG3A compared to those with NIHSS scores corresponding to mild and mild-moderate neurofunctional deficits (p = 0.016). STRING analyses of proteins in each robust regression model demonstrated substantial networking between REG3A and other systemic proteins highly relevant to ischemic stroke. The present study provides novel data on systemic REG3A in the context of ischemic stroke. These results demonstrate the influential role of REG3A regarding surrogate functional and radiographic outcomes of stroke severity. Additionally, they provide novel insight into the role of REG3A and related proteins during the complex neuroinflammatory process of ischemic stroke. These data provide a foundation for future studies to investigate REG3A and related networking proteins as potential biomarkers with prognostic potential, as well as potential therapeutic targets. (Figure presented.).
AB - Regenerating Family Member 3 Alpha (REG3A) is a multifunctional protein with antimicrobial activity, and primarily secreted by the intestine and pancreas. Studies have shown an increased expression of REG3A in systemic inflammatory responses to acute injury and infection, but studies investigating REG3A during the pathogenesis of ischemic stroke are limited. The aims of this study were to examine the associations between arterial expression of REG3A and other arterial inflammatory proteins implicated in stroke pathogenesis, as well as associations between REG3A and markers of poor outcome for ischemic stroke. The University of Kentucky Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol (clinicaltrials.gov NCT03153683) utilizes thrombectomy to isolate intracranial arterial blood (i.e. distal to thrombus) and systemic arterial blood (i.e. carotid). Samples were analyzed by Olink Proteomics for N = 42 subjects. Statistical analyses of plasma proteins included 2-sample t-tests, spearman and biserial correlations, and robust regression models to elucidate network signaling and association to clinical outcomes. Results indicated that levels of systemic REG3A were positively correlated with inflammatory proteins interleukin IL6 (R = 0.344, p = 0.030) and IL17C (R = 0.468, p = 0.002). 2-sided t- tests examining differences of systemic REG3A within quartiles of NIHSS admission score depicted significant differences between quartiles. Those with NIHSS scores corresponding to moderate and moderate-severe neurofunctional deficits had significantly higher levels of systemic REG3A compared to those with NIHSS scores corresponding to mild and mild-moderate neurofunctional deficits (p = 0.016). STRING analyses of proteins in each robust regression model demonstrated substantial networking between REG3A and other systemic proteins highly relevant to ischemic stroke. The present study provides novel data on systemic REG3A in the context of ischemic stroke. These results demonstrate the influential role of REG3A regarding surrogate functional and radiographic outcomes of stroke severity. Additionally, they provide novel insight into the role of REG3A and related proteins during the complex neuroinflammatory process of ischemic stroke. These data provide a foundation for future studies to investigate REG3A and related networking proteins as potential biomarkers with prognostic potential, as well as potential therapeutic targets. (Figure presented.).
UR - http://www.scopus.com/inward/record.url?scp=85117013485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117013485&partnerID=8YFLogxK
U2 - 10.1111/jnc.15520
DO - 10.1111/jnc.15520
M3 - Article
C2 - 34558059
AN - SCOPUS:85117013485
SN - 0022-3042
VL - 160
SP - 100
EP - 112
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
ER -