Assessing the factors affecting maple syrup yield in the US and predicting production potential in Kentucky

Bobby Thapa, Thomas O. Ochuodho, John M. Lhotka, William Thomas, Zachary J. Hackworth, Jacob Muller, Thomas J. Brandeis, Edward Olale, Mo Zhou, Jingjing Liang

Research output: Contribution to journalArticlepeer-review

Abstract

Maple syrup is an important part of the economy in various regions of the United States. Studies on maple syrup production potential mostly use climatic factors as determinants and, therefore, fail to account for non-climatic factors. In this study, we applied a stochastic production function framework to establish a relationship between maple syrup yield and a set of climatic (temperature and tapping season length) and non-climatic determining factors, such as the number of maple trees and utilization rate of the potential number of taps. Tree characteristics, climatic, and other factors had mixed effects on syrup yield. The number of maple trees, the number of taps, and the minimum temperature had marginal negative effects on average syrup yield, while the length of the season and the maximum temperature had positive effects. A predictive model was developed and used to estimate the potential production of maple syrup under low, medium and high utilization levels in Kentucky, a likely region for maple syrup production. This model could be useful for maple syrup research, education, and extension in maple-producing states.

Original languageEnglish
Article number100649
JournalTrees, Forests and People
Volume17
DOIs
StatePublished - Sep 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s)

Keywords

  • Maple syrup
  • Production potential
  • Stochastic model
  • Yield

ASJC Scopus subject areas

  • Forestry
  • Economics, Econometrics and Finance (miscellaneous)
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Assessing the factors affecting maple syrup yield in the US and predicting production potential in Kentucky'. Together they form a unique fingerprint.

Cite this