Abstract
Narrowing row width in soybean fields leads to earlier canopy closure, which may increase capture of incoming solar radiation during critical crop stages for yield determination. Theoretically, this should enhance seed yield. However, in prior studies, the impact of narrowing row spacing on soybean yield has been inconsistent. To explore on a broader scale the potential factors underlying this inconsistency, we evaluated the yield difference between narrow (NR; ≈38 cm) and wide (WR; ≈76 cm) row spacing using two sources of yield and management information: (i) data collected from 4879 soybean production fields via a multi-year, multi-state survey of soybean producers in the North Central US region; and (ii) data extracted from 129 site-year experiments that quantified NR-WR yield difference. The producer fields were allocated to their respective climate-soil domains to enable analysis of the NR-WR yield difference within each domain. The experimental trial data originated from three US geographic regions: south, central, and north. Key crop developmental stages in each trial were estimated using a soybean crop simulation model to discern if changes in crop phenology or any weather variable occurring before versus after a specific crop stage modulated the magnitude of the NR-WR yield difference. Analysis of experimental trial data indicated that, while NR yields were overall higher than WR yields, the NR-WR yield difference varied by region: 540 (south), 104 (central), and 240 kg ha−1 (north); the respective NR yields were greater than WR yields in 92%, 68%, and 84% of the cases. In the north and south regions, the NR-WR yield difference increased when the crop cycle length decreased as a consequence of later sowing date, earlier cultivar maturity group, and/or higher temperature. The relatively smaller (and occasionally negative) NR-WR yield difference detected in the central region was likely the result of environmental conditions that favored canopy closure irrespective of row spacing. In contrast to the analysis of the experimental database, no consistent NR-WR yield differences were detected in the producer field database. We hypothesize that the apparent absence of a significant NR-WR effect in the producer dataset is likely associated with the background management used with narrow spacing, together with yield losses due to wheel damage and greater disease pressure. This complementary approach using both producer and experimental data can help evaluate if practices documented in experimental trials to enhance yield realize equivalent yield increases in producer fields and, if not, explore underlying causes for the discrepancy.
Original language | English |
---|---|
Pages (from-to) | 98-106 |
Number of pages | 9 |
Journal | Field Crops Research |
Volume | 230 |
DOIs | |
State | Published - Jan 1 2019 |
Bibliographical note
Publisher Copyright:© 2018 Elsevier B.V.
Funding
The authors acknowledge the North Central Soybean Research Program , Nebraska Soybean Board , and Wisconsin Soybean Marketing Board for funding this work. We wish to thank Haishun Yang for assisting with the weather interpolation and Daren Mueller, Jordan Stanley, Shaun Casteel, and Adam Roth for helping collect the producer data. We also thank Lim Davy, Agustina Diale, Laurie Gerber, Clare Gietzel, Mariano Hernandez, Ngu Kah Hui, Caleb Novak, Juliana de Oliveira Hello, Matt Richmond, and Paige Wacker for inputting and cleaning the survey data. Finally, we thank South Dakota Soybean On-Farm Research Program and the Iowa On-Farm Network for making experimental data available through their websites.
Funders | Funder number |
---|---|
Nebraska Soybean Board | |
Wisconsin Soybean Marketing Board |
Keywords
- Crop model
- Row spacing
- Seed yield
- Soybean
- Survey data
ASJC Scopus subject areas
- Agronomy and Crop Science
- Soil Science