TY - JOUR
T1 - B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity
AU - Aguiar, Ricardo C.T.
AU - Takeyama, Kunihiko
AU - He, Chunyan
AU - Kreinbrink, Katherine
AU - Shipp, Margaret A.
PY - 2005/10/7
Y1 - 2005/10/7
N2 - BAL1 (B-aggressive lymphoma 1) was originally identified as a risk-related gene in diffuse large B-cell lymphoma. BAL1 encodes a nuclear protein with N-terminal macro domains and a putative C-terminal poly(ADP-ribose) polymerase (PARP) active site. Macro domains are sequences homologous to the non-histone region of histone macroH2A. Several lines of evidence suggest that these domains may modulate transcription, including a high concentration of histone macroH2A in the inactive X chromosome, direct interference with transcription factor binding in a positioned nucleosome, and structural similarity to DNA binding domains. Poly(ADP-ribosyl)ation is a critical post-translational modification that regulates chromatin configuration and transcription. In this report we describe two additional BAL family members, BAL2 and BAL3, with N-terminal macro domains and putative C-terminal PARP active sites and assess the function of these specific regions in BAL family members. Herein, we demonstrate that BAL macro domains repress transcription when tethered to a promoter. In addition, we show that BAL2 and BAL3, but not BAL1, exhibit PARP activity. In agreement with these data, BAL1 lacks several critical donor and acceptor residues that are conserved in the BAL2 and -3 PARP active sites. Of interest, BAL family members with inactive or functional PARP domains differed in their ability to repress transcription. BAL family members are the only described proteins with both PARP and macro domains, underscoring the potential functional significance of this unique combination.
AB - BAL1 (B-aggressive lymphoma 1) was originally identified as a risk-related gene in diffuse large B-cell lymphoma. BAL1 encodes a nuclear protein with N-terminal macro domains and a putative C-terminal poly(ADP-ribose) polymerase (PARP) active site. Macro domains are sequences homologous to the non-histone region of histone macroH2A. Several lines of evidence suggest that these domains may modulate transcription, including a high concentration of histone macroH2A in the inactive X chromosome, direct interference with transcription factor binding in a positioned nucleosome, and structural similarity to DNA binding domains. Poly(ADP-ribosyl)ation is a critical post-translational modification that regulates chromatin configuration and transcription. In this report we describe two additional BAL family members, BAL2 and BAL3, with N-terminal macro domains and putative C-terminal PARP active sites and assess the function of these specific regions in BAL family members. Herein, we demonstrate that BAL macro domains repress transcription when tethered to a promoter. In addition, we show that BAL2 and BAL3, but not BAL1, exhibit PARP activity. In agreement with these data, BAL1 lacks several critical donor and acceptor residues that are conserved in the BAL2 and -3 PARP active sites. Of interest, BAL family members with inactive or functional PARP domains differed in their ability to repress transcription. BAL family members are the only described proteins with both PARP and macro domains, underscoring the potential functional significance of this unique combination.
UR - http://www.scopus.com/inward/record.url?scp=26644446700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26644446700&partnerID=8YFLogxK
U2 - 10.1074/jbc.M505408200
DO - 10.1074/jbc.M505408200
M3 - Article
C2 - 16061477
AN - SCOPUS:26644446700
SN - 0021-9258
VL - 280
SP - 33756
EP - 33765
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 40
ER -