TY - JOUR
T1 - Bernstein-Markov theorem for normed spaces
AU - Harris, Lawrence A.
PY - 1997
Y1 - 1997
N2 - Let X and Y be real normed linear spaces and let φ: X → R be a non-negative function satisfying φ(x + y) ≤ φ(x) + ∥y∥ for all x, y ∈ X. We obtain estimates for optimal constants, whose existence is proven, and present applications to polynomials and multilinear mappings in normed spaces.
AB - Let X and Y be real normed linear spaces and let φ: X → R be a non-negative function satisfying φ(x + y) ≤ φ(x) + ∥y∥ for all x, y ∈ X. We obtain estimates for optimal constants, whose existence is proven, and present applications to polynomials and multilinear mappings in normed spaces.
UR - http://www.scopus.com/inward/record.url?scp=0031109007&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031109007&partnerID=8YFLogxK
U2 - 10.1006/jmaa.1997.5339
DO - 10.1006/jmaa.1997.5339
M3 - Article
AN - SCOPUS:0031109007
SN - 0022-247X
VL - 208
SP - 476
EP - 486
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 2
ER -