TY - JOUR
T1 - Bioavailability of gold nanomaterials to plants
T2 - Importance of particle size and surface coating
AU - Judy, Jonathan D.
AU - Unrine, Jason M.
AU - Rao, William
AU - Wirick, Sue
AU - Bertsch, Paul M.
PY - 2012/8/7
Y1 - 2012/8/7
N2 - We used the model organisms Nicotiana tabacum L. cv Xanthi (tobacco) and Triticum aestivum (wheat) to investigate plant uptake of 10-, 30-, and 50-nm diameter Au manufactured nanomaterials (MNMs) coated with either tannate (T-MNMs) or citrate (C-MNMs). Primary particle size, hydrodynamic size, and zeta potential were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and electrophoretic mobility measurements, respectively. Plants were exposed to NPs hydroponically for 3 or 7 days for wheat and tobacco, respectively. Volume averaged Au concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). Spatial distribution of Au in tissue samples was determined using laser ablation ICP-MS (LA-ICP-MS) and scanning X-ray fluorescence microscopy (μXRF). Both C-MNMs and T-MNMs of each size treatment bioaccumulated in tobacco, but no bioaccumulation of MNMs was observed for any treatment in wheat. These results indicate that MNMs of a wide range of size and with different surface chemistries are bioavailable to plants, provide mechanistic information regarding the role of cell wall pores in plant uptake of MNMs, and raise questions about the importance of plant species to MNM bioaccumulation.
AB - We used the model organisms Nicotiana tabacum L. cv Xanthi (tobacco) and Triticum aestivum (wheat) to investigate plant uptake of 10-, 30-, and 50-nm diameter Au manufactured nanomaterials (MNMs) coated with either tannate (T-MNMs) or citrate (C-MNMs). Primary particle size, hydrodynamic size, and zeta potential were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and electrophoretic mobility measurements, respectively. Plants were exposed to NPs hydroponically for 3 or 7 days for wheat and tobacco, respectively. Volume averaged Au concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). Spatial distribution of Au in tissue samples was determined using laser ablation ICP-MS (LA-ICP-MS) and scanning X-ray fluorescence microscopy (μXRF). Both C-MNMs and T-MNMs of each size treatment bioaccumulated in tobacco, but no bioaccumulation of MNMs was observed for any treatment in wheat. These results indicate that MNMs of a wide range of size and with different surface chemistries are bioavailable to plants, provide mechanistic information regarding the role of cell wall pores in plant uptake of MNMs, and raise questions about the importance of plant species to MNM bioaccumulation.
UR - http://www.scopus.com/inward/record.url?scp=84864722862&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864722862&partnerID=8YFLogxK
U2 - 10.1021/es3019397
DO - 10.1021/es3019397
M3 - Article
C2 - 22784043
AN - SCOPUS:84864722862
SN - 0013-936X
VL - 46
SP - 8467
EP - 8474
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 15
ER -