Biomechanical device towards quantitative massage

Hansong Zeng, Yi Zhao, Timothy Butterfield, Sudha Agarwal, Haq Furqan, Thomas Best

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Massage therapies are widely employed for improving and recovering tissue functions and physical activities. It is generally believed that such therapies would promote health and well-being by many possible mechanisms, including fastening muscle blood flow, parasympathetic activity, releasing relaxation hormones and inhibiting muscle tension, neuromuscular excitability and stress hormones. Nonetheless, most of current research is based on statistics and thus qualitative, preventing the in-depth study of the effectiveness. This is partially due to the lack of appropriate tools for quantitative loading and in situ assessment of tissue performance. To address this, we develop a biomechanical device to mimic massage therapies by applying controllable mechanical forces to animal tissues during cyclic mechanical motions. The device can apply compressive loads normal to the tissue surface and generate lengthwise motion along the tissue surface. Mechanical forces are applied with controllable magnitudes, frequencies and durations. Tissue mechanical response is recorded and correlated to the loading parameters. The changes of bulk tissue compliance and viscoelastic properties under various loading conditions are evaluated. The improvement of tissue functions and inhibition of muscle inflammation are examined. The results show that the peak torque production increased after massage, which suggests the recovery of muscle functions. A reduced number of infiltrating leukocytes is also observed in the subject muscle fibers after massage. Findings of this study suggest that the biomechanical device offers a quantitative analysis of massage actions, which will help to determine the optimal range of loading conditions required for safe and effective use of massage therapies.

Original languageEnglish
Title of host publicationBiomedical and Biotechnology Engineering
Pages151-157
Number of pages7
DOIs
StatePublished - 2009
Event2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008 - Boston, MA, United States
Duration: Oct 31 2008Nov 6 2008

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume2

Conference

Conference2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Country/TerritoryUnited States
CityBoston, MA
Period10/31/0811/6/08

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Biomechanical device towards quantitative massage'. Together they form a unique fingerprint.

Cite this