TY - JOUR
T1 - Blackberry extracts inhibit activating protein 1 activation and cell transformation by perturbing the mitogenic signaling pathway
AU - Feng, Rentian
AU - Bowman, Linda L.
AU - Lu, Yongju
AU - Leonard, Stephen S.
AU - Shi, Xianglin
AU - Jiang, Bing Hua
AU - Castranova, Vince
AU - Vallyathan, Val
AU - Ding, Min
PY - 2004
Y1 - 2004
N2 - Blackberries are natural rich sources of bioflavonoids and phenolic compounds that are commonly known as potential chemopreventive agents. Here, we investigated the effects of fresh blackberry extracts on proliferation of cancer cells and neoplastic transformation induced by 12-O-tetradecanoylphorbol-13- acetate (TPA), as well as the underlying mechanisms of signal transduction pathways. Using electron spin resonance, we found that blackberry extract is an effective scavenger of free radicals, including hydroxyl and superoxide radicals. Blackberry extract inhibited the proliferation of a human lung cancer cell line, A549. Pretreatment of A549 cells with blackberry extract resulted in an inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation induced by ultraviolet B (UVB) irradiation. Blackberry extract decreased TPA-induced neoplastic transformation of JB6 P+ cells. Pretreatment of JB6 cells with blackberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 transactivation. Furthermore, blackberry extract also blocked UVB- or TPA-induced phosphorylation of ERKs and JNKs, but not p38 kinase. Overall, these results indicated that an extract from fresh blackberry may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh blackberry may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1 and mitogen-activated protein kinase activation.
AB - Blackberries are natural rich sources of bioflavonoids and phenolic compounds that are commonly known as potential chemopreventive agents. Here, we investigated the effects of fresh blackberry extracts on proliferation of cancer cells and neoplastic transformation induced by 12-O-tetradecanoylphorbol-13- acetate (TPA), as well as the underlying mechanisms of signal transduction pathways. Using electron spin resonance, we found that blackberry extract is an effective scavenger of free radicals, including hydroxyl and superoxide radicals. Blackberry extract inhibited the proliferation of a human lung cancer cell line, A549. Pretreatment of A549 cells with blackberry extract resulted in an inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation induced by ultraviolet B (UVB) irradiation. Blackberry extract decreased TPA-induced neoplastic transformation of JB6 P+ cells. Pretreatment of JB6 cells with blackberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 transactivation. Furthermore, blackberry extract also blocked UVB- or TPA-induced phosphorylation of ERKs and JNKs, but not p38 kinase. Overall, these results indicated that an extract from fresh blackberry may inhibit tumor promoter-induced carcinogenesis and associated cell signaling, and suggest that the chemopreventive effects of fresh blackberry may be through its antioxidant properties by blocking reactive oxygen species-mediated AP-1 and mitogen-activated protein kinase activation.
UR - http://www.scopus.com/inward/record.url?scp=9744270759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9744270759&partnerID=8YFLogxK
U2 - 10.1207/s15327914nc5001_11
DO - 10.1207/s15327914nc5001_11
M3 - Article
C2 - 15572301
AN - SCOPUS:9744270759
VL - 50
SP - 80
EP - 89
IS - 1
ER -