Breast-cancer-specific mortality in patients treated based on the 21-gene assay: A SEER population-based study

Valentina I. Petkov, Dave P. Miller, Nadia Howlader, Nathan Gliner, Will Howe, Nicola Schussler, Kathleen Cronin, Frederick L. Baehner, Rosemary Cress, Dennis Deapen, Sally L. Glaser, Brenda Y. Hernandez, Charles F. Lynch, Lloyd Mueller, Ann G. Schwartz, Stephen M. Schwartz, Antoinette Stroup, Carol Sweeney, Thomas C. Tucker, Kevin C. WardCharles Wiggins, Xiao Cheng Wu, Lynne Penberthy, Steven Shak

Research output: Contribution to journalArticlepeer-review

107 Scopus citations

Abstract

The 21-gene Recurrence Score assay is validated to predict recurrence risk and chemotherapy benefit in hormone-receptor-positive (HR+) invasive breast cancer. To determine prospective breast-cancer-specific mortality (BCSM) outcomes by baseline Recurrence Score results and clinical covariates, the National Cancer Institute collaborated with Genomic Health and 14 population-based registries in the the Surveillance, Epidemiology, and End Results (SEER) Program to electronically supplement cancer surveillance data with Recurrence Score results. The prespecified primary analysis cohort was 40–84 years of age, and had node-negative, HR+, HER2-negative, nonmetastatic disease diagnosed between January 2004 and December 2011 in the entire SEER population, and Recurrence Score results (N = 38,568). Unadjusted 5-year BCSM were 0.4% (n = 21,023; 95% confidence interval (CI), 0.3–0.6%), 1.4% (n = 14,494; 95% CI, 1.1–1.7%), and 4.4% (n = 3,051; 95% CI, 3.4–5.6%) for Recurrence Score <18, 18–30, and ≥ 31 groups, respectively (P<0.001). In multivariable analysis adjusted for age, tumor size, grade, and race, the Recurrence Score result predicted BCSM (P<0.001). Among patients with node-positive disease (micrometastases and up to three positive nodes; N = 4,691), 5-year BCSM (unadjusted) was 1.0% (n = 2,694; 95% CI, 0.5–2.0%), 2.3% (n = 1,669; 95% CI, 1.3–4.1%), and 14.3% (n = 328; 95% CI, 8.4– 23.8%) for Recurrence Score <18, 18–30, ≥ 31 groups, respectively (P<0.001). Five-year BCSM by Recurrence Score group are reported for important patient subgroups, including age, race, tumor size, grade, and socioeconomic status. This SEER study represents the largest report of prospective BCSM outcomes based on Recurrence Score results for patients with HR+, HER2-negative, node-negative, or node-positive breast cancer, including subgroups often under-represented in clinical trials.

Original languageEnglish
Article number16017
Journalnpj Breast Cancer
Volume2
Issue number1
DOIs
StatePublished - Dec 14 2016

Bibliographical note

Funding Information:
We acknowledge Anna Lau for medical writing and editorial assistance, and Cindy Loman for statistical graphics support. The ideas and opinions expressed herein are those of the author(s) and endorsement by any State, Department of Public Health, the National Cancer Institute, the Centers for Disease Control and Prevention, or their Contractors and Subcontractors is not intended nor should be inferred. The Surveillance, Epidemiology and End Results (SEER) Program is funded by the National Cancer Institute (NCI). Genomic Health performed the work to electronically submit the Recurrence Score results, but provided no funding for this study. SEER registries were supported as follows: California—the collection of cancer incidence data used in this study was supported by: the California Department of Public Health pursuant to California Health and Safety Code Section 103885; the Centers for Disease Control and Prevention (CDC) National Program of Cancer Registries (NPCR), under cooperative agreement 5NU58DP003862-04/DP003862; the NCI SEER Program, under contract HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the University of Southern California, and contract HHSN261201000034C awarded to the Public Health Institute. Georgia—this work was supported by the NCI, under contract HHSN261201300015I, task order HHSN26100006, and by the CDC, under cooperative agreement 5/U58/ DP003875-03. Hawaii—this work was supported by the NCI, under contract HHSN261201300009I, task order HHSN26100005, and by the University of Hawaii Cancer Center. Iowa—this work was supported by the NCI, under contract HHSN261201300020I, task order HHSN26100006, and by the University of Iowa Holden Comprehensive Cancer Center Support Grant through NCI grant 2P30CA086862-11. Kentucky—collection of the data by the Kentucky Cancer Registry used in this research project was supported by the NCI SEER, under contract HHSN2612013000131, and by the CDC NPCR, under cooperative agreement 5NU58DP003907-04-00. Louisiana—this work was supported by the NCI SEER Program, under contract HHSN261201300016I, task order HHSN26100006, and by the Louisiana State University Health Sciences Center School of Public Health. Michigan—this work was supported by the NCI, under contract HHSN261201300011I; the Karmanos Cancer Institute and Wayne State University Comprehensive Cancer Center Support Grant through NCI grant P30CA022453; and institutional funds from the Karmanos Cancer Institute and Wayne State University. New Mexico—this work was supported by the NCI, under contract HHSN26120130010I, task order HHSN26100005, and by the University of New Mexico Comprehensive Cancer Center Support Grant through NCI grant 2P30CA118100-1. Utah—this work was supported by the University of Utah and Huntsman Cancer Institute Foundation. Washington— this work was supported by the NCI, under contract HHSN26120130012I, task order HHSN26100005, and by the Fred Hutchinson Cancer Research Center Support Grant through NCI grant 5P30CA015704-41. R.C. has received research funding from Genomic Health.

Publisher Copyright:
© 2016 Breast Cancer Research Foundation/Macmillan Publishers Limited.

ASJC Scopus subject areas

  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Pharmacology (medical)

Fingerprint

Dive into the research topics of 'Breast-cancer-specific mortality in patients treated based on the 21-gene assay: A SEER population-based study'. Together they form a unique fingerprint.

Cite this