Abstract
The pretreatment of middlings and coarse refuse material collected from a Pocahontas No.3 coal source using calcination was investigated for the potential of improving the leaching recovery of rare earth elements. Calcination at 600 °C significantly and preferentially improved light REE (LREE) recovery to values in the range of 80–90% using 1.2 M HCl. The positive effect was due to the increased pore diameter and volume as well as thermal decomposition of the minerals associated with the LREEs. Heavy REE recovery was not increased after calcination at 600 °C due to the need for higher temperatures to achieve thermal decomposition of HREE minerals. Furthermore, some HREEs were also associated with sulfide minerals (e.g., pyrite) which were transformed into low-solubility oxides (e.g., hematite) after roasting at 600 °C. Based on the leaching characteristics of the major elements (Fe, Al, Ca and Mg) and REEs along with SEM-EDX data, it was concluded that REEs in the two samples mainly occurred as phosphate minerals. In the middlings, some of the minerals were completely encapsulated by kaolinite, which was less apparent in the coarse refuse. In addition, it was found that a portion of the REEs (10–25%) in the samples were associated with the organic matter and micro-dispersed minerals in the organic matrix, was released after calcination and easily recovered using 0.1 M (NH4)2SO4 solution at pH 5. Scandium primarily occurred in mineral forms with minimum amounts associated with ion-adsorbed clays and organic association.
Original language | English |
---|---|
Pages (from-to) | 130-145 |
Number of pages | 16 |
Journal | Fuel |
Volume | 249 |
DOIs | |
State | Published - Aug 1 2019 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Ltd
Keywords
- Calcination
- Coal
- Leaching recovery
- Mineralogy
- Rare earth elements
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry