TY - JOUR
T1 - Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat
AU - Saatman, Kathryn E.
AU - Murai, Hisayuki
AU - Bartus, Raymond T.
AU - Smith, Douglas H.
AU - Hayward, Neil J.
AU - Perri, Brian R.
AU - McIntosh, Tracy K.
PY - 1996/4/16
Y1 - 1996/4/16
N2 - Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 rain postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n = 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295- treated injured animals showed significant neuromotor deficits (P < 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P < 0.01). However, brain-injured, AK295- treated animals showed markedly improved motor scores (P < 0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P < 0.001), which was significantly attenuated by AK295 treatment (P < 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.
AB - Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 rain postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n = 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295- treated injured animals showed significant neuromotor deficits (P < 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P < 0.01). However, brain-injured, AK295- treated animals showed markedly improved motor scores (P < 0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P < 0.001), which was significantly attenuated by AK295 treatment (P < 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.
UR - http://www.scopus.com/inward/record.url?scp=0030004873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030004873&partnerID=8YFLogxK
U2 - 10.1073/pnas.93.8.3428
DO - 10.1073/pnas.93.8.3428
M3 - Article
C2 - 8622952
AN - SCOPUS:0030004873
SN - 0027-8424
VL - 93
SP - 3428
EP - 3433
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 8
ER -