Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve

Andrei V. Derbenev, Thomas C. Stuart, Bret N. Smith

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids.

Original languageEnglish
Pages (from-to)923-938
Number of pages16
JournalJournal of Physiology
Volume559
Issue number3
DOIs
StatePublished - Sep 15 2004

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve'. Together they form a unique fingerprint.

Cite this