TY - JOUR
T1 - Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice
T2 - Temporal- and background-dependent development of concentric left ventricular hypertrophy
AU - Barrick, Cordelia J.
AU - Rojas, Mauricio
AU - Schoonhoven, Robert
AU - Smyth, Susan S.
AU - Threadgill, David W.
PY - 2007/5
Y1 - 2007/5
N2 - Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.
AB - Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.
KW - Cardiac hypertrophy
KW - Genetic background
KW - Mouse model
UR - http://www.scopus.com/inward/record.url?scp=34250827793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34250827793&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00816.2006
DO - 10.1152/ajpheart.00816.2006
M3 - Article
C2 - 17172276
AN - SCOPUS:34250827793
SN - 0363-6135
VL - 292
SP - H2119-H2130
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5
ER -