TY - JOUR
T1 - Ceramide analog [18F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer’s disease transgenic mice by functioning as a metabolic probe
AU - Crivelli, Simone M.
AU - van Kruining, Daan
AU - Luo, Qian
AU - Stevens, Jo A.A.
AU - Giovagnoni, Caterina
AU - Paulus, Andreas
AU - Bauwens, Matthias
AU - Berkes, Dusan
AU - de Vries, Helga E.
AU - Mulder, Monique T.
AU - Walter, Jochen
AU - Waelkens, Etienne
AU - Derua, Rita
AU - Swinnen, Johannes V.
AU - Dehairs, Jonas
AU - Mottaghy, Felix M.
AU - Losen, Mario
AU - Bieberich, Erhard
AU - Martinez-Martinez, Pilar
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain.
AB - The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain.
UR - http://www.scopus.com/inward/record.url?scp=85095713270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095713270&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-76335-4
DO - 10.1038/s41598-020-76335-4
M3 - Article
C2 - 33168861
AN - SCOPUS:85095713270
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 19354
ER -