Abstract

Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.

Original languageEnglish
Article number383
JournalMetabolites
Volume14
Issue number7
DOIs
StatePublished - Jul 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • cancer metabolism
  • experimental models
  • spatially resolved metabolism
  • stable isotope-resolved metabolomics

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Challenges of Spatially Resolved Metabolism in Cancer Research'. Together they form a unique fingerprint.

Cite this