Characterization of an Ionization Readout Tile for nEXO

M. Jewell, A. Schubert, W. R. Cen, J. Dalmasson, R. Devoe, L. Fabris, G. Gratta, A. Jamil, G. Li, A. Odian, M. Patel, A. Pocar, D. Qiu, Q. Wang, L. J. Wen, J. B. Albert, G. Anton, I. J. Arnquist, I. Badhrees, P. BarbeauD. Beck, V. Belov, F. Bourque, J. P. Brodsky, E. Brown, T. Brunner, A. Burenkov, G. F. Cao, L. Cao, C. Chambers, S. A. Charlebois, M. Chiu, B. Cleveland, M. Coon, A. Craycraft, W. Cree, M. Côté, T. Daniels, S. J. Daugherty, J. Daughhetee, S. Delaquis, A. Der Mesrobian-Kabakian, T. Didberidze, J. Dilling, Y. Y. Ding, M. J. Dolinski, A. Dragone, W. Fairbank, J. Farine, S. Feyzbakhsh, R. Fontaine, D. Fudenberg, G. Giacomini, R. Gornea, E. V. Hansen, D. Harris, M. Hasan, M. Heffner, E. W. Hoppe, A. House, P. Hufschmidt, M. Hughes, J. Hößl, Y. Ito, A. Iverson, X. S. Jiang, S. Johnston, A. Karelin, L. J. Kaufman, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan, D. S. Leonard, S. Li, Z. Li, C. Licciardi, Y. H. Lin, R. Maclellan, T. Michel, B. Mong, D. Moore, K. Murray, R. J. Newby, Z. Ning, O. Njoya, F. Nolet, K. Odgers, M. Oriunno, J. L. Orrell, I. Ostrovskiy, C. T. Overman, G. S. Ortega, S. Parent, A. Piepke, J. F. Pratte, V. Radeka, E. Raguzin, T. Rao, S. Rescia, F. Retiere, A. Robinson, T. Rossignol, P. C. Rowson, N. Roy, R. Saldanha, S. Sangiorgio, S. Schmidt, J. Schneider, D. Sinclair, K. Skarpaas, A. K. Soma, G. St-Hilaire, V. Stekhanov, T. Stiegler, X. L. Sun, M. Tarka, J. Todd, T. Tolba, R. Tsang, T. Tsang, F. Vachon, V. Veeraraghavan, G. Visser, J. L. Vuilleumier, M. Wagenpfeil, M. Weber, W. Wei, U. Wichoski, G. Wrede, S. X. Wu, W. H. Wu, L. Yang, Y. R. Yen, O. Zeldovich, X. Zhang, J. Zhao, Y. Zhou, T. Ziegler

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile, is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm × 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.

Original languageEnglish
Article numberP01006
JournalJournal of Instrumentation
Volume13
Issue number1
DOIs
StatePublished - Jan 2018

Bibliographical note

Publisher Copyright:
© 2018 IOP Publishing Ltd and Sissa Medialab.

Keywords

  • Charge induction
  • Charge transport and multiplication in liquid media
  • Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
  • Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc)

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Characterization of an Ionization Readout Tile for nEXO'. Together they form a unique fingerprint.

Cite this