TY - JOUR
T1 - Characterization of colletotrichum species causing bitter rot of apple in Kentucky orchards
AU - Munir, M.
AU - Amsden, B.
AU - Dixon, E.
AU - Vaillancourt, L.
AU - Ward Gauthier, N. A.
N1 - Publisher Copyright:
© 2016 The American Phytopathological Society.
PY - 2016/11
Y1 - 2016/11
N2 - Multiple species of Colletotrichum can cause bitter rot disease of apple, but the identities and relative representation of the species causing the disease in Kentucky are unknown. In total, 475 Colletotrichum isolates were collected from diseased apple fruit in 25 counties and characterized both morphologically and by using various molecular approaches. Multigene sequence analyses revealed that sample isolates belonged to several newly erected specieswithin the Colletotrichum acutatumand C. gloeosporioides species complexes. The isolates were identified as C. fioriniae and C. nymphaeae, which reside within the C. acutatum species complex, and C. siamense, C. theobromicola, and C. fructicola, which are placed within the C. gloeosporioides species complex. C. fioriniae was the most common species causing bitter rot in Kentucky, comprising more than 70% of the isolates. Infectivity tests on detached fruit showed that C. gloeosporioides species-complex isolates were more aggressive than isolates in the C. acutatum species complex. However, isolates within the C. acutatum species complex produced more spores on lesions compared with isolates within the C. gloeosporioides species complex. Aggressiveness varied among individual specieswithin a species complex. C. siamense was the most aggressive species identified in this study.Within the C. acutatum species complex, C. fioriniae was more aggressive than C. nymphaeae, causing larger, deeper lesions. Apple cultivar did not have a significant effect on lesion development. However, Colletotrichum spp. produced more spores on ‘Red Stayman Winesap’ than on ‘Golden Delicious’. Fungicide sensitivity tests revealed that the C. acutatum species complex wasmore tolerant to thiophanate-methyl, myclobutanil, trifloxystrobin, and captan compared with the C. gloeosporioides species complex. The study also revealed that mycelial growth of C. siamense wasmore sensitive to tested fungicides compared with C. fructicola and C. theobromicola. These research findings emphasize the importance of accurate identification of Colletotrichum spp. within each species complex, because they exhibit differences in pathogenicity and fungicide sensitivity.
AB - Multiple species of Colletotrichum can cause bitter rot disease of apple, but the identities and relative representation of the species causing the disease in Kentucky are unknown. In total, 475 Colletotrichum isolates were collected from diseased apple fruit in 25 counties and characterized both morphologically and by using various molecular approaches. Multigene sequence analyses revealed that sample isolates belonged to several newly erected specieswithin the Colletotrichum acutatumand C. gloeosporioides species complexes. The isolates were identified as C. fioriniae and C. nymphaeae, which reside within the C. acutatum species complex, and C. siamense, C. theobromicola, and C. fructicola, which are placed within the C. gloeosporioides species complex. C. fioriniae was the most common species causing bitter rot in Kentucky, comprising more than 70% of the isolates. Infectivity tests on detached fruit showed that C. gloeosporioides species-complex isolates were more aggressive than isolates in the C. acutatum species complex. However, isolates within the C. acutatum species complex produced more spores on lesions compared with isolates within the C. gloeosporioides species complex. Aggressiveness varied among individual specieswithin a species complex. C. siamense was the most aggressive species identified in this study.Within the C. acutatum species complex, C. fioriniae was more aggressive than C. nymphaeae, causing larger, deeper lesions. Apple cultivar did not have a significant effect on lesion development. However, Colletotrichum spp. produced more spores on ‘Red Stayman Winesap’ than on ‘Golden Delicious’. Fungicide sensitivity tests revealed that the C. acutatum species complex wasmore tolerant to thiophanate-methyl, myclobutanil, trifloxystrobin, and captan compared with the C. gloeosporioides species complex. The study also revealed that mycelial growth of C. siamense wasmore sensitive to tested fungicides compared with C. fructicola and C. theobromicola. These research findings emphasize the importance of accurate identification of Colletotrichum spp. within each species complex, because they exhibit differences in pathogenicity and fungicide sensitivity.
UR - http://www.scopus.com/inward/record.url?scp=85028182672&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028182672&partnerID=8YFLogxK
U2 - 10.1094/PDIS-10-15-1144-RE
DO - 10.1094/PDIS-10-15-1144-RE
M3 - Article
AN - SCOPUS:85028182672
SN - 0191-2917
VL - 100
SP - 2194
EP - 2203
JO - Plant Disease
JF - Plant Disease
IS - 11
ER -