TY - JOUR
T1 - Characterization of the two-component, FAD-dependent monooxygenase SgcC that requires carrier protein-tethered substrates for the biosynthesis of the enediyne antitumor antibiotic C-1027
AU - Lin, Shuangjun
AU - Van Lanen, Steven G.
AU - Shen, Ben
PY - 2008/5/21
Y1 - 2008/5/21
N2 - C-1027 is a potent antitumor antibiotic composed of an apoprotein (CagA) and a reactive enediyne chromophore. The chromophore has four distinct chemical moieties, including an (S)-3-chloro-5-hydroxy-β-tyrosine moiety, the biosynthesis of which from L-α-tyrosine requires five proteins: SgcC, SgcC1, SgcC2, SgcC3, and SgcC4; a sixth protein, SgcC5, catalyzes the incorporation of this β-amino acid moiety into C-1027. Biochemical characterization of SgcC has now revealed that (i) SgcC is a two-component, flavin adenine dinucleotide (FAD)-dependent monooxygenase, (ii) SgcC is only active with SgcC2 (peptidyl carrier protein)-tethered substrates, (iii) SgcC-catalyzed hydroxylation requires O2 and FADH2, the latter supplied by the C-1027 pathway-specific flavin reductase SgcE6 or Escherichia coli flavin reductase Fre, and (iv) SgcC efficiently catalyzes regioselective hydroxylation of 3-substituted β-tyrosyl-S-SgcC2 analogues, including the chloro-, bromo-, iodo-, fluoro-, and methyl-substituted analogues, but does not accept 3-hydroxy-β-tyrosyl-S-SgcC2 as a substrate. Together with the in vitro data for SgcC4, SgcC1, and SgcC3, the results establish that SgcC catalyzes the hydroxylation of (S)-3-chloro-β-tyrosyl-S-SgcC2 as the final step in the biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety prior to incorporation into C-1027. SgcC now represents the first biochemically characterized two-component, FAD-dependent monooxygenase that acts on a carrier-protein-tethered aromatic substrate.
AB - C-1027 is a potent antitumor antibiotic composed of an apoprotein (CagA) and a reactive enediyne chromophore. The chromophore has four distinct chemical moieties, including an (S)-3-chloro-5-hydroxy-β-tyrosine moiety, the biosynthesis of which from L-α-tyrosine requires five proteins: SgcC, SgcC1, SgcC2, SgcC3, and SgcC4; a sixth protein, SgcC5, catalyzes the incorporation of this β-amino acid moiety into C-1027. Biochemical characterization of SgcC has now revealed that (i) SgcC is a two-component, flavin adenine dinucleotide (FAD)-dependent monooxygenase, (ii) SgcC is only active with SgcC2 (peptidyl carrier protein)-tethered substrates, (iii) SgcC-catalyzed hydroxylation requires O2 and FADH2, the latter supplied by the C-1027 pathway-specific flavin reductase SgcE6 or Escherichia coli flavin reductase Fre, and (iv) SgcC efficiently catalyzes regioselective hydroxylation of 3-substituted β-tyrosyl-S-SgcC2 analogues, including the chloro-, bromo-, iodo-, fluoro-, and methyl-substituted analogues, but does not accept 3-hydroxy-β-tyrosyl-S-SgcC2 as a substrate. Together with the in vitro data for SgcC4, SgcC1, and SgcC3, the results establish that SgcC catalyzes the hydroxylation of (S)-3-chloro-β-tyrosyl-S-SgcC2 as the final step in the biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety prior to incorporation into C-1027. SgcC now represents the first biochemically characterized two-component, FAD-dependent monooxygenase that acts on a carrier-protein-tethered aromatic substrate.
UR - http://www.scopus.com/inward/record.url?scp=43949100296&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43949100296&partnerID=8YFLogxK
U2 - 10.1021/ja710601d
DO - 10.1021/ja710601d
M3 - Article
C2 - 18426211
AN - SCOPUS:43949100296
SN - 0002-7863
VL - 130
SP - 6616
EP - 6623
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 20
ER -