TY - JOUR
T1 - Chicken Muscle Protein-Derived Peptide VVHPKESF Reduces TNFα-Induced Inflammation and Oxidative Stress by Suppressing TNFR1 Signaling in Human Vascular Endothelial Cells
AU - Fan, Hongbing
AU - Bhullar, Khushwant S.
AU - Wang, Zihan
AU - Wu, Jianping
N1 - Publisher Copyright:
© 2022 Wiley-VCH GmbH.
PY - 2022/9
Y1 - 2022/9
N2 - Scope: This study aims to investigate the protective effects of four chicken muscle-derived peptides Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. Methods and results: Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng mL−1) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) are measured by qRT-PCR or western blotting; soluble TNFR1 level and nicotinamide adenine dinucleotide phosphate NADPH) oxidase activity are determined by Elisa kits; superoxide is measured by dihydroethidium staining. Only V-F treatment inhibits the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuates both gene and protein expressions of TNFR1. Conclusion: V-F treatment ameliorates TNFα-induced endothelial inflammation and oxidative stress likely via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases.
AB - Scope: This study aims to investigate the protective effects of four chicken muscle-derived peptides Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. Methods and results: Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng mL−1) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) are measured by qRT-PCR or western blotting; soluble TNFR1 level and nicotinamide adenine dinucleotide phosphate NADPH) oxidase activity are determined by Elisa kits; superoxide is measured by dihydroethidium staining. Only V-F treatment inhibits the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuates both gene and protein expressions of TNFR1. Conclusion: V-F treatment ameliorates TNFα-induced endothelial inflammation and oxidative stress likely via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases.
KW - NADPH
KW - TNFR1
KW - bioactive peptides
KW - cellular mechanism
KW - endothelial cell
KW - inflammation
KW - meat
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85134219821&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134219821&partnerID=8YFLogxK
U2 - 10.1002/mnfr.202200184
DO - 10.1002/mnfr.202200184
M3 - Article
C2 - 35770889
AN - SCOPUS:85134219821
SN - 1613-4125
VL - 66
JO - Molecular Nutrition and Food Research
JF - Molecular Nutrition and Food Research
IS - 17
M1 - 2200184
ER -