Abstract
Motivation: RNA-sequencing (RNA-seq) of tumor tissue is typically only used to measure gene expression. Here, we present a statistical approach that leverages existing RNA-seq data to also detect somatic copy number alterations (SCNAs), a pervasive phenomenon in human cancers, without a need to sequence the corresponding DNA. Results: We present an analysis of 4942 participant samples from 28 cancers in The Cancer Genome Atlas (TCGA), demonstrating robust detection of SCNAs from RNA-seq. Using genotype imputation and haplotype information, our RNA-based method had a median sensitivity of 85% to detect SCNAs defined by DNA analysis, at high specificity (∼95%). As an example of translational potential, we successfully replicated SCNA features associated with breast cancer subtypes. Our results credential haplotype-based inference based on RNA-seq to detect SCNAs in clinical and population-based settings.
Original language | English |
---|---|
Pages (from-to) | 1483-1490 |
Number of pages | 8 |
Journal | Bioinformatics |
Volume | 38 |
Issue number | 6 |
DOIs | |
State | Published - Mar 15 2022 |
Bibliographical note
Publisher Copyright:© 2022 The Author(s) 2022. Published by Oxford University Press.
ASJC Scopus subject areas
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics