Abstract
Fly ashes produced from Canadian power plants using pulverized coal and fluidized bed combustors were examined for their carbon content to determine their ability to capture mercury. The feed coal used in these power plants were lignite, subbituminous, high and medium volatile bituminous, their blends, and also blends of coal with petroleum coke (Petcoke). The carbon and mercury content of the coals and fly ashes were determined using the ASTM standard method and by the cold vapour atomic absorption spectrometry method. The carbon content of the fly ash was concentrated by strong acid digestion using HCl and HF. The quantitative and qualitative analyses of the carbon concentrate were made by using a reflected light microscope. The results show that the carbon content of fly ash appears to be partially related to depositional environment during coalification and to the rank of the coal. The Hg captured by the fly ash depends on the rank and blend of the feed coals and the type of carbon in the fly ash. The isotropic vitrinitic char is mostly responsible for the capture of most Hg in fly ash. The inadvertent increase in carbon content due to the blending of coal with petroleum coke did not increase the amount Hg captured by the fly ash. The fly ash collected by the hot side electrostatic precipitator has a low Hg content and no relation between the Hg and carbon content of the ash was observed. These results indicate that the quantity of carbon in the fly ash alone does not determine the amount Hg captured. The types of carbon present (isotropic and anisotropic vitrinitic, isotropic inertinitic and anisotropic Petcoke), the halogen content, the types of fly ash control devices, and the temperatures of the fly ash control devices all play major roles in the capture of Hg. Crown
Original language | English |
---|---|
Pages (from-to) | 1949-1957 |
Number of pages | 9 |
Journal | Fuel |
Volume | 87 |
Issue number | 10-11 |
DOIs | |
State | Published - Aug 2008 |
Keywords
- Carbon/char
- Fly ash
- Mercury
- Petcoke
- Rank
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry