Abstract
IMPORTANCE The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, highgranularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. OBJECTIVES To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. DESIGN, SETTING, AND PARTICIPANTS In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen >1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patientswere stratified using aWorld Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). MAIN OUTCOMES AND MEASURES Patient demographic characteristics and COVID-19 severity using theWorld Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. RESULTS The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2%female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6%overall and decreased from 16.4%in March to April 2020 to 8.6%in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95%CI, 1.03-1.04), male sex (OR, 1.60; 95%CI, 1.51-1.69), liver disease (OR, 1.20; 95%CI, 1.08-1.34), dementia (OR, 1.26; 95%CI, 1.13-1.41), African American (OR, 1.12; 95%CI, 1.05-1.20) and Asian (OR, 1.33; 95%CI, 1.12-1.57) race, and obesity (OR, 1.36; 95%CI, 1.27-1.46) were independently associated with higher clinical severity. CONCLUSIONS AND RELEVANCE This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.
Original language | English |
---|---|
Pages (from-to) | E2116901 |
Journal | JAMA network open |
Volume | 4 |
Issue number | 7 |
DOIs | |
State | Published - Jul 13 2021 |
Bibliographical note
Publisher Copyright:© 2021 American Medical Association. All rights reserved.
Funding
Conflict of Interest Disclosures: Dr Bennett reported receiving grants from the National Institutes of Health (NIH)/National Center for Advancing Translational Sciences (NCATS) during the conduct of the study and grants from the NIH/Eunice Kennedy Shriver National Institute of Child Health and Human Development and NIH/National Institute of Allergy and Infectious Diseases outside the submitted work. Dr Moffitt reported receiving grants from the NIH during the conduct of the study. Dr Hajagos reported receiving grants from the NIH/NCATS during the conduct of the study. Dr Amor reported receiving commercial payment from the NCATS during the conduct of the study. Mr Bissell reported being employed by Palantir Technologies during the conduct of the study. Dr Bradwell reported being employed by Palantir Technologies during the conduct of the study and outside the submitted work. Dr Byrd reported receiving grants from the NIH/National Heart, Lung, and Blood Institute during the conduct of the study. Ms Gabriel reported receiving grants from the NIH/NCATS during the conduct of the study. Dr Garibaldi reported receiving personal fees from Janssen Development LLC and from the US Food and Drug Administration Pulmonary-Asthma Drug Advisory Committee outside the submitted work. Dr Girvin reported being an employee of Palantir Technologies. Dr Kavuluru reported receiving grants from the NIH/NCATS during the conduct of the study. Ms Kostka reported receiving an N3C subaward from Johns Hopkins University during the conduct of the study and is an employee of IQVIA. Dr Lehmann reported receiving grants from the NIH during the conduct of the study. Mr Manna reported receiving personal fees from Palantir Technologies Inc during the conduct of the study. Ms McMurry reported being a cofounder of Pryzm Health outside the submitted work. Dr Pfaff reported receiving grants from NIH/NCATS during the conduct of the study. Mr Qureshi reported being an employee of Palantir Technologies during the conduct of the study. Dr Haendel reported receiving grants from the NIH during the conduct of the study. Dr Chute reported receiving grants from the NIH/NCATS during the conduct of the study. No other disclosures were reported. Funding/Support: The primary study sponsors are multiple institutes of the National Institutes of Health. The NCATS is the primary steward of the N3C data, created the underlying architecture of the N3C Data Enclave, manages the Data Transfer Agreements and Data Use Agreements, houses the Data Access Committee, and supports contracts to vendors (see Conflicts of Interest Disclosures) to help build various aspects of the N3C Data Enclave. The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data Enclave and supported by NCATS U24 TR002306 (Drs Haendel, Guinney, Chute, Saltz, and Williams; also supporting Dr Pfaff, Ms Walden, Ms McMurry, Mr Neumann, Ms Gabriel, and Dr Lehmann).This study was also supported by the following (institutions with release data): grants U24TR002306 (Stony Brook University), U54GM104938 (Oklahoma Clinical and Translational Science Institute, University of Oklahoma Health Sciences Center), U54GM104942 (West Virginia Clinical and Translational Science Institute, West Virginia University), U54GM115428 (Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center), U54GM115458 (Great Plains IDeA-Clinical & Translational Research, University of Nebraska Medical Center), U54GM115516 (Northern New England Clinical & Translational Research) Network, Maine Medical Center), UL1TR001420 (Wake Forest Clinical and Translational Science Institute, Wake Forest University Health Sciences), UL1TR001422 (Northwestern University Clinical and Translational Science Institute, Northwestern University)), UL1TR001425 (Center for Clinical and Translational Science and Training, University of Cincinnati), UL1TR001439 (Institute for Translational Sciences, University of Texas Medical Branch at Galveston), UL1TR001450 (South Carolina Clinical & Translational Research Institute, Medical University of South Carolina), UL1TR001453 (UMass Center for Clinical and Translational Science, University of Massachusetts Medical School Worcester), UL1TR001855 (Southern California Clinical and Translational Science Institute, University of Southern California), UL1TR001873 (Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center), UL1TR001876 (Clinical and Translational Science Institute at Children's National, George Washington Children's Research Institute), UL1TR001998 (Appalachian Translational Research Network, University of Kentucky), (University of Rochester Clinical & Translational Science Institute), UL1TR002003 (University of Illinois at Chicago Center for Clinical and Translational Science), UL1TR002014 (Penn State Clinical and Translational Science Institute), UL1TR002240 (Michigan Institute for Clinical and Health Research, University of Michigan at Ann Arbor), UL1TR002243 (Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center), UL1TR002319 (Institute of Translational Health Sciences, University of Washington), UL1TR002345
Funders | Funder number |
---|---|
George Washington Children's Research Institute | UL1TR001998 |
Mississippi Center for Clinical and Translational Research | |
UMass Center for Clinical and Translational Science, University of Massachusetts Medical School Worcester | UL1TR001855 |
University of Mississippi Medical Center | U54GM115458 |
University of Rochester Clinical & Translational Science Institute | UL1TR002003, UL1TR002014 |
Wake Forest University Health Sciences | UL1TR001422 |
National Institutes of Health (NIH) | |
National Institute of Allergy and Infectious Diseases | |
University of Southern California | UL1TR001873 |
University of Southern California | |
National Center for Advancing Translational Sciences (NCATS) | UL1TR003017 |
National Center for Advancing Translational Sciences (NCATS) | |
University of Nebraska Medical Center | UL1TR001420, U54GM115516 |
University of Nebraska Medical Center | |
Medical University South Carolina | UL1TR001453 |
Medical University South Carolina | |
Northwestern Polytechnical University | UL1TR001425 |
Northwestern Polytechnical University | |
Vanderbilt Institute for Clinical and Translational Research | |
University of Kentucky | |
The George Washington University | UL1TR002345 |
The George Washington University | |
Institute for Translational Neuroscience | |
University Oklahoma Health Sciences Center | U54GM104942 |
University Oklahoma Health Sciences Center | |
Indiana Clinical and Translational Sciences Institute | |
University of Texas Medical Branch at Galveston | UL1TR001450 |
University of Texas Medical Branch at Galveston | |
University of Cincinnati University Research Council | UL1TR001439 |
University of Cincinnati University Research Council | |
Michigan Institute for Clinical and Health Research | UL1TR002243 |
Michigan Institute for Clinical and Health Research | |
Southern California Clinical and Translational Science Institute | |
West Virginia University | U54GM115428 |
West Virginia University | |
Eunice Kennedy Shriver National Institute of Child Health and Human Development | |
Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center | UL1TR002319 |
Vanderbilt Digestive Diseases Research Center, Vanderbilt University Medical Center | |
National Institute of Health National Center for Advancing Translational Sciences | |
Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA | UL1TR001876 |
Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA | |
South Carolina Clinical and Translational Research Institute, Medical University of South Carolina | |
Penn State Clinical and Translational Science Institute | UL1TR002240 |
Penn State Clinical and Translational Science Institute | |
Wake Forest Clinical and Translational Science Institute, Wake Forest School of Medicine | |
Institute for Clinical and Translational Research, University of Maryland, Baltimore |
ASJC Scopus subject areas
- General Medicine