Closed loop performance of a slotless Lorentz self-bearing motor

Hooi Mei Chin, L. Scott Stephens

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

In previous work the authors presented a Lorentz self-bearing motor design targeted for precision pointing and smooth angular slewing applications. The motor also offers potential advantages when operated as a synchronous machine at high speed including larger power densities and shorter shafts. In this paper, the closed loop performance of the motor at low transient speeds (0 - 588 rpm) is presented. Using these results, several challenges to achieving high-speed rotation are identified and discussed. The most significant is the heavy cross coupling within the actuator which limits bearing stiffness and stability, and is amplified at rotor natural frequencies resulting in potential loss of levitation when passing through critical speeds. Of particular interest is the discovery of a significant cross coupling effect between the radial and tangential directions. A theory is put forth explaining this effect.

Original languageEnglish
Pages583-591
Number of pages9
DOIs
StatePublished - 2003
Event2003 ASME Turbo Expo - Atlanta, GA, United States
Duration: Jun 16 2003Jun 19 2003

Conference

Conference2003 ASME Turbo Expo
Country/TerritoryUnited States
CityAtlanta, GA
Period6/16/036/19/03

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Closed loop performance of a slotless Lorentz self-bearing motor'. Together they form a unique fingerprint.

Cite this