Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics

Thuan Anh Vo, Quoc Khanh Tran, Hoang Vu Ly, Byeongwan Kwon, Hyun Tae Hwang, Jinsoo Kim, Seung Soo Kim

Research output: Contribution to journalArticlepeer-review

86 Citations (SciVal)

Abstract

Co-pyrolysis of biomass with plastics is an interesting research trend in improving both the yield and quality of oil products toward taking advantage of flexible material resources and sustainable fuel development. This study investigated the kinetic behaviors using thermogravimetric analysis and pyrolysis characterization for the co-pyrolysis of biomass (bamboo and oak wood) with plastics (polypropylene [PP] and polystyrene [PS]) in a fixed-bed reactor. The kinetic triplet for feedstocks was determined using the isoconversional method, compensation effect, and master plot method. The addition of 20 wt% plastics into biomass decreased the activation energy, with the most distinct positive synergistic effect for the bamboo/PS blend. In addition, the effect of co-pyrolysis temperature and biomass/plastic ratio on pyrolysis characteristics was investigated. Through biomass pyrolysis and biomass/plastic co-pyrolysis, the positive changes in distributions and physical-chemical properties of the products (i.e., char, oil, and gas) were observed using various analytical methods. Especially in the case of biomass/PS blends, the synergistic effect of co-pyrolysis was shown due to the difference in the actual and theoretical yields of the products. The liquid yields of the co-pyrolysis were 50.95, 50.17, 55.15, and 56.16 wt% for bamboo/PP, bamboo/PS, oak wood/PP, and oak wood/PS, respectively. The highest HHV of 28.22 MJ/kg was obtained for oil derived from the co-pyrolysis of bamboo/PS. Furthermore, co-pyrolysis chars have high HHVs in the range of 30.73–32.41 MJ/kg, suggesting that they can be used as solid fuels.

Original languageEnglish
Article number105464
JournalJournal of Analytical and Applied Pyrolysis
Volume163
DOIs
StatePublished - May 2022

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

Keywords

  • Biomass
  • Co-pyrolysis
  • Fixed-bed reactor
  • Kinetic triplet
  • Plastics

ASJC Scopus subject areas

  • Analytical Chemistry
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics'. Together they form a unique fingerprint.

Cite this