TY - JOUR
T1 - Cocaine esterase-cocaine binding process and the free energy profiles by molecular dynamics and potential of mean force simulations
AU - Huang, Xiaoqin
AU - Zhao, Xinyun
AU - Zheng, Fang
AU - Zhan, Chang Guo
PY - 2012/3/15
Y1 - 2012/3/15
N2 - The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profiles for the binding process of (-)-cocaine interacting with wild-type cocaine esterase (CocE) and its mutants (T172R/G173Q and L119A/L169K/G173Q). According to the MD simulations, the general protein-(-)-cocaine binding mode is not affected by the mutations; e.g. the benzoyl group of (-)-cocaine is always bound in a subsite composed of aromatic residues W151, W166, F261, and F408 and hydrophobic residue L407, while the carbonyl oxygen on the benzoyl group of (-)-cocaine is hydrogen-bonded with the oxyanion-hole residues Y44 and Y118. According to the PMF-calculated free energy profiles for the binding process, the binding free energies for (-)-cocaine with the wild-type, T172R/G173Q, and L119A/L169K/G173Q CocEs are predicted to be -6.4, -6.2, and -5.0 kcal/mol, respectively. The computational predictions are supported by experimental kinetic data, as the calculated binding free energies are in good agreement with the experimentally derived binding free energies, i.e., -7.2, -6.7, and -4.8 kcal/mol for the wild-type, T172R/G173Q, and L119A/L169K/G173Q, respectively. The reasonable agreement between the computational and experimental data suggests that the PMF simulations may be used as a valuable tool in new CocE mutant design that aims to decrease the Michaelis-Menten constant of the enzyme for (-)-cocaine.
AB - The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profiles for the binding process of (-)-cocaine interacting with wild-type cocaine esterase (CocE) and its mutants (T172R/G173Q and L119A/L169K/G173Q). According to the MD simulations, the general protein-(-)-cocaine binding mode is not affected by the mutations; e.g. the benzoyl group of (-)-cocaine is always bound in a subsite composed of aromatic residues W151, W166, F261, and F408 and hydrophobic residue L407, while the carbonyl oxygen on the benzoyl group of (-)-cocaine is hydrogen-bonded with the oxyanion-hole residues Y44 and Y118. According to the PMF-calculated free energy profiles for the binding process, the binding free energies for (-)-cocaine with the wild-type, T172R/G173Q, and L119A/L169K/G173Q CocEs are predicted to be -6.4, -6.2, and -5.0 kcal/mol, respectively. The computational predictions are supported by experimental kinetic data, as the calculated binding free energies are in good agreement with the experimentally derived binding free energies, i.e., -7.2, -6.7, and -4.8 kcal/mol for the wild-type, T172R/G173Q, and L119A/L169K/G173Q, respectively. The reasonable agreement between the computational and experimental data suggests that the PMF simulations may be used as a valuable tool in new CocE mutant design that aims to decrease the Michaelis-Menten constant of the enzyme for (-)-cocaine.
UR - http://www.scopus.com/inward/record.url?scp=84863358861&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863358861&partnerID=8YFLogxK
U2 - 10.1021/jp2111605
DO - 10.1021/jp2111605
M3 - Article
C2 - 22385120
AN - SCOPUS:84863358861
SN - 1520-6106
VL - 116
SP - 3361
EP - 3368
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 10
ER -