TY - JOUR
T1 - Coexistence of ferromagnetism and unconventional spin-glass freezing in the site-disordered kagome ferrite SrS n2 F e4 O11
AU - Shlyk, L.
AU - Strobel, S.
AU - Farmer, B.
AU - De Long, L. E.
AU - Niewa, R.
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/2/23
Y1 - 2018/2/23
N2 - Single-crystal x-ray diffraction refinements indicate SrSn2Fe4O11 crystallizes in the hexagonal R-type ferrite structure with noncentrosymmetric space group P63mc and lattice parameters a=5.9541(2)Å, c=13.5761(5)Å, Z=2 (R(F)=0.034). Octahedrally coordinated 2a [M(1) and M(1a)] and 6c sites [M(2)] have random, mixed occupation by Sn and Fe; whereas the tetrahedrally coordinated 2b sites [Fe(3) and Fe(3a)] are exclusively occupied by Fe, whose displacement from the ideal position with trigonal-bipyramidal coordination causes the loss of inversion symmetry. Our dc and ac magnetization data indicate SrSn2Fe4O11 single crystals undergo a ferro- or ferri-magnetic transition below a temperature TC=630K with very low coercive fields μoHc=0.27Oe and μoHc=1.5Oe at 300 K, for applied field perpendicular and parallel to the c axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Time-dependent dc magnetization and frequency-dependent ac magnetization data indicate the onset of short-range, spin-glass freezing below Tf=35.8K, which results from crystallographic disorder of magnetic Fe3+ and nonmagnetic Sn4+ ions on a frustrated Kagome sublattice. Anomalous ac susceptibility and thermomagnetic relaxation behavior in the short-range-ordered state differs from that of conventional spin glasses. Optical measurements in the ultraviolet to visible frequency range in a diffuse reflectance geometry indicate an overall optical band gap of 0.8 eV, consistent with observed semiconducting properties.
AB - Single-crystal x-ray diffraction refinements indicate SrSn2Fe4O11 crystallizes in the hexagonal R-type ferrite structure with noncentrosymmetric space group P63mc and lattice parameters a=5.9541(2)Å, c=13.5761(5)Å, Z=2 (R(F)=0.034). Octahedrally coordinated 2a [M(1) and M(1a)] and 6c sites [M(2)] have random, mixed occupation by Sn and Fe; whereas the tetrahedrally coordinated 2b sites [Fe(3) and Fe(3a)] are exclusively occupied by Fe, whose displacement from the ideal position with trigonal-bipyramidal coordination causes the loss of inversion symmetry. Our dc and ac magnetization data indicate SrSn2Fe4O11 single crystals undergo a ferro- or ferri-magnetic transition below a temperature TC=630K with very low coercive fields μoHc=0.27Oe and μoHc=1.5Oe at 300 K, for applied field perpendicular and parallel to the c axis, respectively. The value for TC is exceptionally high, and the coercive fields exceptionally low, among the known R-type ferrites. Time-dependent dc magnetization and frequency-dependent ac magnetization data indicate the onset of short-range, spin-glass freezing below Tf=35.8K, which results from crystallographic disorder of magnetic Fe3+ and nonmagnetic Sn4+ ions on a frustrated Kagome sublattice. Anomalous ac susceptibility and thermomagnetic relaxation behavior in the short-range-ordered state differs from that of conventional spin glasses. Optical measurements in the ultraviolet to visible frequency range in a diffuse reflectance geometry indicate an overall optical band gap of 0.8 eV, consistent with observed semiconducting properties.
UR - http://www.scopus.com/inward/record.url?scp=85043765541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043765541&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.97.054426
DO - 10.1103/PhysRevB.97.054426
M3 - Article
AN - SCOPUS:85043765541
SN - 2469-9950
VL - 97
JO - Physical Review B
JF - Physical Review B
IS - 5
M1 - 054426
ER -