Collective bulk and edge modes through the quantum phase transition in graphene at ν=0

Ganpathy Murthy, Efrat Shimshoni, H. A. Fertig

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Undoped graphene in a strong, tilted magnetic field exhibits a radical change in conduction upon changing the tilt angle, which can be attributed to a quantum phase transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) bulk state at filling factor ν=0. This behavior signifies a change in the nature of the collective ground state and excitations across the transition. Using the time-dependent Hartree-Fock approximation, we study the collective neutral (particle-hole) excitations in the two phases, both in the bulk and on the edge of the system. The CAF has gapless neutral modes in the bulk, whereas the FM state supports only gapped modes in its bulk. At the edge, however, only the FM state supports gapless charge-carrying states. Linear response functions are computed to elucidate their sensitivity to the various modes. The response functions demonstrate that the two phases can be distinguished by the evolution of a local charge pulse at the edge.

Original languageEnglish
Article number045105
JournalPhysical Review B
Volume93
Issue number4
DOIs
StatePublished - Jan 8 2016

Bibliographical note

Funding Information:
National Science Foundation http://dx.doi.org/10.13039/100000001 NSF http://sws.geonames.org/6252001/ http://sws.geonames.org/6254928/ PHY-1066293 1306897 1506460 Simons Foundation http://dx.doi.org/10.13039/100000893 http://sws.geonames.org/6252001/ http://sws.geonames.org/5128638/ United States - Israel Binational Science Foundation http://dx.doi.org/10.13039/100006221 BSF http://sws.geonames.org/294640/ 2012120 Israel Science Foundation http://dx.doi.org/10.13039/501100003977 ISF http://sws.geonames.org/294640/ 231/14 Useful discussions with A. Young, P. Jarillo-Herrero, R. Shankar, and E. Berg are gratefully acknowledged. The authors thank the Aspen Center for Physics (NSF Grant No. PHY-1066293) for its hospitality and acknowledge support by the Simons Foundation (E.S.). This work was supported by the US-Israel Binational Science Foundation (BSF), Grant No. 2012120 (E.S., G.M., H.A.F.), the Israel Science Foundation (ISF), Grant No. 231/14 (E.S.), and NSF-DMR 1306897 (G.M.), and by NSF-DMR 1506460.

Publisher Copyright:
© 2016 American Physical Society.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Collective bulk and edge modes through the quantum phase transition in graphene at ν=0'. Together they form a unique fingerprint.

Cite this