Collective edge modes in fractional quantum Hall systems

Hoang K. Nguyen, Yogesh N. Joglekar, Ganpathy Murthy

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Over the past few years one of us (Murthy) in collaboration with Shankar has developed an extended Hamiltonian formalism capable of describing the ground-state and low-energy excitations in the fractional quantum Hall regime. The Hamiltonian, expressed in terms of composite fermion operators, incorporates all the nonperturbative features of the fractional Hall regime, so that conventional many-body approximations such as Hartree-Fock and time-dependent Hartree-Fock are applicable. We apply this formalism to develop a microscopic theory of the collective edge modes in fractional quantum Hall regime. We present the results for edge mode dispersions at principal filling factors v= 1/3 1/5, and 2/5 for systems with unreconstructed edges. The primary advantage of the method is that one works in the thermodynamic limit right from the beginning, thus avoiding the finite-size effects which ultimately limit exact diagonalization studies.

Original languageEnglish
Article number035324
Pages (from-to)035324-1-035324-10
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number3
StatePublished - Jul 2004

Bibliographical note

Funding Information:
We thank Kun Yang for helpful discussions. This work was supported by the National Science Foundation under Grant No. DMR-0311761 (H.N. and G.M.) and by the LDRD at Los Alamos National Laboratory (Y.J.).

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Collective edge modes in fractional quantum Hall systems'. Together they form a unique fingerprint.

Cite this