Comprehensive design and performance validation of a wind tunnel for advanced respirable dust deposition investigations

Ahmed Aboelezz, Maria Beltran, Michael J. Hargather, Mostafa Hassanalian, Pedram Roghanchi

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This study presents the comprehensive design and performance validation of a wind tunnel specifically developed for advanced investigations into respirable dust deposition pertinent to coal mining environments. The design integrates a constant particle delivery system engineered to maintain uniform particle dispersion, which is critical for replicating real-world conditions in coal mines. Our methodology involved using ANSYS Fluent for the design and optimization of a blowing-type wind tunnel, with a focus on controlling turbulence levels and minimizing pressure drops, which are crucial for accurate dust behaviour simulation. The core of our research emphasizes the deployment of the Aerosol Lung Deposition Apparatus (ALDA) alongside a custom dust injection system to measure particle distributions within the test section. This setup enabled us to simulate the inhalation of coal dust particles, providing a realistic scenario for assessing potential hazards to miners. Validation of the tunnel's performance was achieved through extensive testing with dust sensors and a hot-wire anemometer, which verified the airflow velocity and turbulence against the initial design specifications. The findings affirm the wind tunnel's capability to effectively model dust deposition and its impacts, thereby offering opportunities for enhancing miner safety and health standards.

Original languageEnglish
Article number135516
JournalJournal of Hazardous Materials
Volume478
DOIs
StatePublished - Oct 5 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

Keywords

  • Computational Fluid Dynamics
  • Mining
  • Respirable Dust
  • Wind Tunnel

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Comprehensive design and performance validation of a wind tunnel for advanced respirable dust deposition investigations'. Together they form a unique fingerprint.

Cite this