Abstract
Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.
Original language | English |
---|---|
Title of host publication | 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Subtitle of host publication | Smarter Technology for a Healthier World, EMBC 2017 - Proceedings |
Pages | 3616-3619 |
Number of pages | 4 |
ISBN (Electronic) | 9781509028092 |
DOIs | |
State | Published - Sep 13 2017 |
Event | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of Duration: Jul 11 2017 → Jul 15 2017 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
ISSN (Print) | 1557-170X |
Conference
Conference | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 |
---|---|
Country/Territory | Korea, Republic of |
City | Jeju Island |
Period | 7/11/17 → 7/15/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics