Computing large and small stable models

Mirosław Truszczyński

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


In this paper, we focus on the problem of existence and computing of small and large stable models. We show that for every fixed integer k, there is a linear-time algorithm to decide the problem LSM (large stable models problem): does a logic program P have a stable model of size at least |P|-k? In contrast, we show that the problem SSM (small stable models problem) to decide whether a logic program P has a stable model of size at most k is much harder. We present two algorithms for this problem but their running time is given by polynomials of order depending on k. We show that the problem SSM is fixed-parameter intractable by demonstrating that it is W[2]-hard. This result implies that it is unlikely an algorithm exists to compute stable models of size at most k that would run in time O(mc), where m is the size of the program and c is a constant independent of k. We also provide an upper bound on the fixed-parameter complexity of the problem SSM by showing that it belongs to the class W[3].

Original languageEnglish
Pages (from-to)1-23
Number of pages23
JournalTheory and Practice of Logic Programming
Issue number1
StatePublished - Jan 2002


  • Fixed-parameter complexity
  • Stable models

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Hardware and Architecture
  • Computational Theory and Mathematics
  • Artificial Intelligence


Dive into the research topics of 'Computing large and small stable models'. Together they form a unique fingerprint.

Cite this