Control of chiral orbital currents in a colossal magnetoresistance material

Yu Zhang, Yifei Ni, Hengdi Zhao, Sami Hakani, Feng Ye, Lance DeLong, Itamar Kimchi, Gang Cao

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Colossal magnetoresistance (CMR) is an extraordinary enhancement of the electrical conductivity in the presence of a magnetic field. It is conventionally associated with a field-induced spin polarization that drastically reduces spin scattering and electric resistance. Ferrimagnetic Mn3Si2Te6 is an intriguing exception to this rule: it exhibits a seven-order-of-magnitude reduction in ab plane resistivity that occurs only when a magnetic polarization is avoided1,2. Here, we report an exotic quantum state that is driven by ab plane chiral orbital currents (COC) flowing along edges of MnTe6 octahedra. The c axis orbital moments of ab plane COC couple to the ferrimagnetic Mn spins to drastically increase the ab plane conductivity (CMR) when an external magnetic field is aligned along the magnetic hard c axis. Consequently, COC-driven CMR is highly susceptible to small direct currents exceeding a critical threshold, and can induce a time-dependent, bistable switching that mimics a first-order ‘melting transition’ that is a hallmark of the COC state. The demonstrated current-control of COC-enabled CMR offers a new paradigm for quantum technologies.

Original languageEnglish
Pages (from-to)467-472
Number of pages6
JournalNature
Volume611
Issue number7936
DOIs
StatePublished - Nov 17 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Control of chiral orbital currents in a colossal magnetoresistance material'. Together they form a unique fingerprint.

Cite this