Abstract
Corticobasal degeneration (CBD) is a clinically heterogeneous tauopathy, which has overlapping clinicopathologic and genetic characteristics with progressive supranuclear palsy (PSP). This study aimed to elucidate whether transactive response DNA-binding protein of 43 kDa (TDP-43) pathology contributes to clinicopathologic heterogeneity of CBD. Paraffin-embedded sections of the midbrain, pons, subthalamic nucleus, and basal forebrain from 187 autopsy-confirmed CBD cases were screened with immunohistochemistry for phospho-TDP-43. In cases with TDP-43 pathology, additional brain regions (i.e., precentral, cingulate, and superior frontal gyri, hippocampus, medulla, and cerebellum) were immunostained. Hierarchical clustering analysis was performed based on the topographical distribution and severity of TDP-43 pathology, and clinicopathologic and genetic features were compared between the clusters. TDP-43 pathology was observed in 45% of CBD cases, most frequently in midbrain tegmentum (80% of TDP-43-positive cases), followed by subthalamic nucleus (69%). TDP-43-positive CBD was divided into TDP-limited (52%) and TDP-severe (48%) by hierarchical clustering analysis. TDP-severe patients were more likely to have been diagnosed clinically as PSP compared to TDP-limited and TDP-negative patients (80 vs 32 vs 30%, P < 0.001). The presence of downward gaze palsy was the strongest factor for the antemortem diagnosis of PSP, and severe TDP-43 pathology in the midbrain tectum was strongly associated with downward gaze palsy. In addition, tau burden in the olivopontocerebellar system was significantly greater in TDP-positive than TDP-negative CBD. Genetic analyses revealed that MAPT H1/H1 genotype frequency was significantly lower in TDP-severe than in TDP-negative and TDP-limited CBD (65 vs 89 vs 91%, P < 0.001). The homozygous minor allele frequencies in GRN rs5848 and TMEM106B rs3173615 were not significantly different between the three groups. In conclusion, the present study indicates that CBD with severe TDP-43 pathology is a distinct clinicopathologic subtype of CBD, characterized by PSP-like clinical presentations, severe tau pathology in the olivopontocerebellar system, and low frequency of MAPT H1 haplotype.
Original language | English |
---|---|
Pages (from-to) | 389-404 |
Number of pages | 16 |
Journal | Acta Neuropathologica |
Volume | 136 |
Issue number | 3 |
DOIs | |
State | Published - Sep 1 2018 |
Bibliographical note
Funding Information:Acknowledgements We would like to thank the patients and their families who donated brains to help further the scientific understanding of neurodegeneration. The authors would also like to acknowledge Linda Rousseau, Virginia Phillips, and Ariston L. Librero (Mayo Clinic, Jacksonville) for histologic support, Monica Castanedes-Casey (Mayo Clinic, Jacksonville) for immunohistochemistry support, Laura J. Lewis-Tuffin (Mayo Clinic, Jacksonville) for confocal microscopy support, and Drs. Zbigniew K. Wszolek (Mayo Clinic, Jacksonville), Daniel A. Drubach, and David S. Knopman (Mayo Clinic, Rochester) for contributing patients. This work is supported by NIH Grant P50 NS072187, a Jaye F. and Betty F. Dyer Foundation Fellowship in progressive supranuclear palsy research, and CBD Solutions Research Grant. DWD and OAR are supported by a NINDS Tau Center without Walls (U54-NS10069). OAR is supported by the R01-NS078086 and the Mayo Clinic Foundation and the Center for Individualized Medicine.
Funding Information:
We would like to thank the patients and their families who donated brains to help further the scientific understanding of neurodegeneration. The authors would also like to acknowledge Linda Rousseau, Virginia Phillips, and Ariston L. Librero (Mayo Clinic, Jacksonville) for histologic support, Monica Castanedes-Casey (Mayo Clinic, Jacksonville) for immunohistochemistry support, Laura J. Lewis-Tuffin (Mayo Clinic, Jacksonville) for confocal microscopy support, and Drs. Zbigniew K. Wszolek (Mayo Clinic, Jacksonville), Daniel A. Drubach, and David S. Knopman (Mayo Clinic, Rochester) for contributing patients. This work is supported by NIH Grant P50 NS072187, a Jaye F. and Betty F. Dyer Foundation Fellowship in progressive supranuclear palsy research, and CBD Solutions Research Grant. DWD and OAR are supported by a NINDS Tau Center without Walls (U54-NS10069). OAR is supported by the R01-NS078086 and the Mayo Clinic Foundation and the Center for Individualized Medicine.
Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Keywords
- Argyrophilic grain disease
- Corticobasal degeneration
- Corticobasal syndrome
- MAPT
- Progressive supranuclear palsy
- TDP-43
ASJC Scopus subject areas
- Pathology and Forensic Medicine
- Clinical Neurology
- Cellular and Molecular Neuroscience