Cost-aware Inference of Bovine Respiratory Disease in Calves using Precision Livestock Technology

Enrico Casella, Melissa C. Cantor, Simone Silvestri, Dave L. Renaud, Joao H.C. Costa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Bovine Respiratory Disease (BRD) is the second leading cause of death in young dairy calves, and is associated with less growth, and reduced long-term performance such as less milk production, which makes BRD a financial burden on a farm's economy. Precision technologies, such as accelerometers, automatic feeders, and cameras have been extensively used to collect, summarize, and interpret changes in baseline dairy cattle behavior. While some efforts to evaluate the presence of statistical relationships between calves' behavior and BRD status have been made, there is very little research in pairing such technologies with manual examinations to improve the accuracy and cost of BRD monitoring. In this paper, we propose a framework for diagnosis and early prediction of BRD in calves. This framework is composed by a machine learning model as well as by a cost-sensitive feature selection problem called Cost Optimization Worth (COW). COW maximizes prediction accuracy given a budget constraint. We show that COW is NP-Hard and propose an efficient heuristic with polynomial complexity. We validate our methodology on a real dataset of 46 automatic and manually collected features, representing 106 calves observed during the preweaning period of 50 days. Our results show that our machine learning model can correctly classify a sick cow with a 97% accuracy and up to 5 days prior to BRD diagnosis, outperforming a recent state-of-the-art approach. Furthermore, our feature selection results show that in a low-budget scenario, manually collected features are more valuable than automated features in detecting sick cows. Conversely, in a high-budget scenario, automated features report higher accuracy for the early prediction of BRD.

Original languageEnglish
Title of host publicationProceedings - 18th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2022
Pages109-116
Number of pages8
ISBN (Electronic)9781665495127
DOIs
StatePublished - 2022
Event18th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2022 - Los Angeles, United States
Duration: May 30 2022Jun 1 2022

Publication series

NameProceedings - 18th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2022

Conference

Conference18th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2022
Country/TerritoryUnited States
CityLos Angeles
Period5/30/226/1/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

Funding

This work is partially supported by the NIFA grant Nr. 2021-68014-34139 and by the NSF Smart and Connected Communities Grant Nr. 1952045.

FundersFunder number
National Science Foundation (NSF)1952045
National Institute of Food and Agriculture2021-68014-34139

    Keywords

    • Precision livestock farming
    • cost-sensitive feature selection
    • machine learning
    • precision technology

    ASJC Scopus subject areas

    • Artificial Intelligence
    • Computer Networks and Communications
    • Hardware and Architecture
    • Instrumentation

    Fingerprint

    Dive into the research topics of 'Cost-aware Inference of Bovine Respiratory Disease in Calves using Precision Livestock Technology'. Together they form a unique fingerprint.

    Cite this