TY - JOUR
T1 - CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors
AU - Corbo, Joseph C.
AU - Lawrence, Karen A.
AU - Karlstetter, Marcus
AU - Myers, Connie A.
AU - Abdelaziz, Musa
AU - Dirkes, William
AU - Weigelt, Karin
AU - Seifert, Martin
AU - Benes, Vladimir
AU - Fritsche, Lars G.
AU - Weber, Bernhard H.F.
AU - Langmann, Thomas
PY - 2010/11
Y1 - 2010/11
N2 - Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl-/- retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease.
AB - Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl-/- retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease.
UR - http://www.scopus.com/inward/record.url?scp=77956394013&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956394013&partnerID=8YFLogxK
U2 - 10.1101/gr.109405.110
DO - 10.1101/gr.109405.110
M3 - Article
C2 - 20693478
AN - SCOPUS:77956394013
SN - 1088-9051
VL - 20
SP - 1512
EP - 1525
JO - Genome Research
JF - Genome Research
IS - 11
ER -