Crystal Structure of Human Thimet Oligopeptidase Provides Insight into Substrate Recognition, Regulation, and Localization

Kallol Ray, Christina S. Hines, Jerry Coll-Rodriguez, David W. Rodgers

Research output: Contribution to journalArticlepeer-review

79 Scopus citations


Thimet oligopeptidase (TOP) is a zinc metallopeptidase that metabolizes a number of bioactive peptides and degrades peptides released by the proteasome, limiting antigenic presentation by MHC class I molecules. We present the crystal structure of human TOP at 2.0-Å resolution. The active site is located at the base of a deep channel that runs the length of the elongated molecule, an overall fold first seen in the closely related metallopeptidase neurolysin. Comparison of the two related structures indicates hinge-like flexibility and identifies elements near one end of the channel that adopt different conformations. Relatively few of the sequence differences between TOP and neurolysin map to the proposed substrate-binding site, and four of these variable residues may account for differences in substrate specificity. In addition, a loop segment (residues 599-611) in TOP differs in conformation and degree of order from the corresponding neurolysin loop, suggesting it may also play a role in activity differences. Cysteines thought to mediate covalent oligomerization of rat TOP, which can inactivate the enzyme, are found to be surface-accessible in the human enzyme, and additional cysteines (residues 321,350, and 644) may also mediate multimerization in the human homolog. Disorder in the N terminus of TOP indicates it may be involved in subcellular localization, but a potential nuclear import element is found to be part of a helix and, therefore, unlikely to be involved in transport. A large acidic patch on the surface could potentially mediate a protein-protein interaction, possibly through formation of a covalent linkage.

Original languageEnglish
Pages (from-to)20480-20489
Number of pages10
JournalJournal of Biological Chemistry
Issue number19
StatePublished - May 7 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Crystal Structure of Human Thimet Oligopeptidase Provides Insight into Substrate Recognition, Regulation, and Localization'. Together they form a unique fingerprint.

Cite this