TY - JOUR
T1 - Crystal Structure of Human Thimet Oligopeptidase Provides Insight into Substrate Recognition, Regulation, and Localization
AU - Ray, Kallol
AU - Hines, Christina S.
AU - Coll-Rodriguez, Jerry
AU - Rodgers, David W.
PY - 2004/5/7
Y1 - 2004/5/7
N2 - Thimet oligopeptidase (TOP) is a zinc metallopeptidase that metabolizes a number of bioactive peptides and degrades peptides released by the proteasome, limiting antigenic presentation by MHC class I molecules. We present the crystal structure of human TOP at 2.0-Å resolution. The active site is located at the base of a deep channel that runs the length of the elongated molecule, an overall fold first seen in the closely related metallopeptidase neurolysin. Comparison of the two related structures indicates hinge-like flexibility and identifies elements near one end of the channel that adopt different conformations. Relatively few of the sequence differences between TOP and neurolysin map to the proposed substrate-binding site, and four of these variable residues may account for differences in substrate specificity. In addition, a loop segment (residues 599-611) in TOP differs in conformation and degree of order from the corresponding neurolysin loop, suggesting it may also play a role in activity differences. Cysteines thought to mediate covalent oligomerization of rat TOP, which can inactivate the enzyme, are found to be surface-accessible in the human enzyme, and additional cysteines (residues 321,350, and 644) may also mediate multimerization in the human homolog. Disorder in the N terminus of TOP indicates it may be involved in subcellular localization, but a potential nuclear import element is found to be part of a helix and, therefore, unlikely to be involved in transport. A large acidic patch on the surface could potentially mediate a protein-protein interaction, possibly through formation of a covalent linkage.
AB - Thimet oligopeptidase (TOP) is a zinc metallopeptidase that metabolizes a number of bioactive peptides and degrades peptides released by the proteasome, limiting antigenic presentation by MHC class I molecules. We present the crystal structure of human TOP at 2.0-Å resolution. The active site is located at the base of a deep channel that runs the length of the elongated molecule, an overall fold first seen in the closely related metallopeptidase neurolysin. Comparison of the two related structures indicates hinge-like flexibility and identifies elements near one end of the channel that adopt different conformations. Relatively few of the sequence differences between TOP and neurolysin map to the proposed substrate-binding site, and four of these variable residues may account for differences in substrate specificity. In addition, a loop segment (residues 599-611) in TOP differs in conformation and degree of order from the corresponding neurolysin loop, suggesting it may also play a role in activity differences. Cysteines thought to mediate covalent oligomerization of rat TOP, which can inactivate the enzyme, are found to be surface-accessible in the human enzyme, and additional cysteines (residues 321,350, and 644) may also mediate multimerization in the human homolog. Disorder in the N terminus of TOP indicates it may be involved in subcellular localization, but a potential nuclear import element is found to be part of a helix and, therefore, unlikely to be involved in transport. A large acidic patch on the surface could potentially mediate a protein-protein interaction, possibly through formation of a covalent linkage.
UR - http://www.scopus.com/inward/record.url?scp=2442517311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2442517311&partnerID=8YFLogxK
U2 - 10.1074/jbc.M400795200
DO - 10.1074/jbc.M400795200
M3 - Article
C2 - 14998993
AN - SCOPUS:2442517311
SN - 0021-9258
VL - 279
SP - 20480
EP - 20489
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 19
ER -