Abstract
The CST3 Thr25 allele of CST3, which encodes cystatin C, leads to reduced cystatin C secretion and conveys susceptibility to Alzheimer's disease. Here we show that overexpression of human cystatin C in brains of APP-transgenic mice reduces cerebral amyloid-β deposition and that cystatin C binds amyloid-β and inhibits its fibril formation. Our results suggest that cystatin C concentrations modulate cerebral amyloidosis risk and provide an opportunity for genetic risk assessment and therapeutic interventions.
Original language | English |
---|---|
Pages (from-to) | 1437-1439 |
Number of pages | 3 |
Journal | Nature Genetics |
Volume | 39 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2007 |
Bibliographical note
Funding Information:We would like to thank H. Blöndal (University of Reykjavik, Iceland) and M. Tolnay (University of Basel, Switzerland) for the tissue of individuals with HCHWA-I and Alzheimer’s disease, respectively, and L. Mucke (Gladstone Institute, San Francisco, California) for the GFAP promoter. The experimental help of T. Herbert (Institute for Biometry, Tübingen, Germany), M. Mittelbronn (Institute of Neuropathology, Tübingen, Germany), T. Bolmont, Z. Gao, C. Schäfer, J. Odenthal and R. Radde (Hertie Institute, Tübingen, Germany) are gratefully acknowledged. We also thank L. Walker (Emory University, Atlanta, Georgia) and L. Bertram (Massachusetts General Hospital Institute of Neurodegenerative Disease, Charlestown, Massachusetts) for valuable comments on this manuscript. This work was supported by grants to M.J. from BMBF (NGFN2 and 01GU0522-ARREST-AD), EU contract LSHM-CT-2003-503330 (APOPIS), and to A.G. from the Swedish Research Council (05196).
Funding
We would like to thank H. Blöndal (University of Reykjavik, Iceland) and M. Tolnay (University of Basel, Switzerland) for the tissue of individuals with HCHWA-I and Alzheimer’s disease, respectively, and L. Mucke (Gladstone Institute, San Francisco, California) for the GFAP promoter. The experimental help of T. Herbert (Institute for Biometry, Tübingen, Germany), M. Mittelbronn (Institute of Neuropathology, Tübingen, Germany), T. Bolmont, Z. Gao, C. Schäfer, J. Odenthal and R. Radde (Hertie Institute, Tübingen, Germany) are gratefully acknowledged. We also thank L. Walker (Emory University, Atlanta, Georgia) and L. Bertram (Massachusetts General Hospital Institute of Neurodegenerative Disease, Charlestown, Massachusetts) for valuable comments on this manuscript. This work was supported by grants to M.J. from BMBF (NGFN2 and 01GU0522-ARREST-AD), EU contract LSHM-CT-2003-503330 (APOPIS), and to A.G. from the Swedish Research Council (05196).
Funders | Funder number |
---|---|
Bundesministerium für Bildung und Forschung | LSHM-CT-2003-503330, 01GU0522-ARREST-AD |
Vetenskapsrådet | 05196 |
ASJC Scopus subject areas
- Genetics