TY - JOUR
T1 - Cytoprotective effect of the elongation factor-2 kinase-mediated autophagy in breast cancer cells subjected to growth factor inhibition
AU - Cheng, Yan
AU - Li, Huaijun
AU - Ren, Xingcong
AU - Niu, Tingkuang
AU - Hait, William N.
AU - Yang, Jinming
PY - 2010
Y1 - 2010
N2 - Background: Autophagy is a highly conserved and regulated cellular process employed by living cells to degrade proteins and organelles as a response to metabolic stress. We have previously reported that eukaryotic elongation factor-2 kinase (eEF-2 kinase, also known as Ca2+/calmodulin-dependent protein kinase III) can positively modulate autophagy and negatively regulate protein synthesis. The purpose of the current study was to determine the role of the eEF-2 kinaseregulated autophagy in the response of breast cancer cells to inhibitors of growth factor signaling. Methodology/Principal Findings: We found that nutrient depletion or growth factor inhibitors activated autophagy in human breast cancer cells, and the increased activity of autophagy was associated with a decrease in cellular ATP and an increase in activities of AMP kinase and eEF-2 kinase. Silencing of eEF-2 kinase relieved the inhibition of protein synthesis, led to a greater reduction of cellular ATP, and blunted autophagic response. We further showed that suppression of eEF-2 kinase-regulated autophagy impeded cell growth in serum/nutrient-deprived cultures and handicapped cell survival, and enhanced the efficacy of the growth factor inhibitors such as trastuzumab, gefitinib, and lapatinib. Conclusion/Significance: The results of this study provide new evidence that activation of eEF-2 kinase-mediated autophagy plays a protective role for cancer cells under metabolic stress conditions, and that targeting autophagic survival may represent a novel approach to enhancing the effectiveness of growth factor inhibitors.
AB - Background: Autophagy is a highly conserved and regulated cellular process employed by living cells to degrade proteins and organelles as a response to metabolic stress. We have previously reported that eukaryotic elongation factor-2 kinase (eEF-2 kinase, also known as Ca2+/calmodulin-dependent protein kinase III) can positively modulate autophagy and negatively regulate protein synthesis. The purpose of the current study was to determine the role of the eEF-2 kinaseregulated autophagy in the response of breast cancer cells to inhibitors of growth factor signaling. Methodology/Principal Findings: We found that nutrient depletion or growth factor inhibitors activated autophagy in human breast cancer cells, and the increased activity of autophagy was associated with a decrease in cellular ATP and an increase in activities of AMP kinase and eEF-2 kinase. Silencing of eEF-2 kinase relieved the inhibition of protein synthesis, led to a greater reduction of cellular ATP, and blunted autophagic response. We further showed that suppression of eEF-2 kinase-regulated autophagy impeded cell growth in serum/nutrient-deprived cultures and handicapped cell survival, and enhanced the efficacy of the growth factor inhibitors such as trastuzumab, gefitinib, and lapatinib. Conclusion/Significance: The results of this study provide new evidence that activation of eEF-2 kinase-mediated autophagy plays a protective role for cancer cells under metabolic stress conditions, and that targeting autophagic survival may represent a novel approach to enhancing the effectiveness of growth factor inhibitors.
UR - http://www.scopus.com/inward/record.url?scp=77956362469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956362469&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0009715
DO - 10.1371/journal.pone.0009715
M3 - Article
C2 - 20300520
AN - SCOPUS:77956362469
SN - 1932-6203
VL - 5
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e9715
ER -