Deep simple morphophysiological dormancy in seeds of the basal taxad Cephalotaxus

Chia Ju Yang, Ching Te Chien, Yue Ken Liao, Shun Ying Chen, Jerry M. Baskin, Carol C. Baskin, Ling Long Kuo-Huang

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


Although mature seeds of the monogeneric conifer family Cephalotaxaceae sensu stricto have underdeveloped embryos, no definitive studies have been done to classify dormancy in this family. Our primary purpose was to determine the kind of dormancy in seeds of Cephalotaxus wilsoniana and to put the results into a broad phylogenetic context for gymnosperms. The species is of horticultural and medicinal value, and information is needed on how to propagate it efficiently from seeds. Embryo growth and germination were monitored for seeds at warm, cold and warm plus cold temperatures, and germination was monitored for seeds subjected to: (1) cold → warm → cold → warm; and (2) warm → cold → warm → cold → warm temperature sequences. The effects of gibberellic acids GA3 and GA4 were tested on radicle emergence in ungerminated seeds and on shoot emergence in root-emerged seeds. Germination was promoted by ≥ 36 weeks of warm stratification followed by ≥ 8 weeks of cold stratification, but only if seeds were returned to high temperatures. The underdeveloped embryo must increase in length by >120% before the radicle emerges. Neither GA3 nor GA4 was effective in promoting radicle emergence; however, both plant growth regulators increased rate (but not percentage) of shoot emergence in root-emerged seeds. We conclude that seeds of C. wilsoniana have the deep simple level of morphophysiological dormancy (MPD), C1b-C3-B1b; thus, warm stratification followed by cold stratification and then warm-temperature incubation are required for germination. In gymnosperms, MPD is known in cycads, Ginkgo and now in three families of conifers.

Original languageEnglish
Pages (from-to)215-226
Number of pages12
JournalSeed Science Research
Issue number3
StatePublished - Sep 2011


  • Cephalotaxus
  • cold stratification
  • deep simple morphophysiological dormancy
  • gibberellins
  • seed germination
  • underdeveloped embryo
  • warm plus cold stratification

ASJC Scopus subject areas

  • Plant Science


Dive into the research topics of 'Deep simple morphophysiological dormancy in seeds of the basal taxad Cephalotaxus'. Together they form a unique fingerprint.

Cite this