TY - JOUR
T1 - Deficiency in p38β MAPK Fails to Inhibit Cytokine Production or Protect Neurons against Inflammatory Insult in In Vitro and In Vivo Mouse Models
AU - Xing, Bin
AU - Bachstetter, Adam D.
AU - Van Eldik, Linda J.
PY - 2013/2/15
Y1 - 2013/2/15
N2 - The p38 MAPK pathway plays a key role in regulating the production of proinflammatory cytokines, such as TNFα and IL-1β, in peripheral inflammatory disorders. There are four major isoforms of p38 MAPK (p38α, β, δ, γ), with p38α and p38β the targets of most p38 MAPK inhibitor drugs. Our previous studies demonstrated that the p38α MAPK isoform is an important contributor to stressor-induced proinflammatory cytokine up-regulation and neurotoxicity in the brain. However, the potential role of the p38β MAPK isoform in CNS proinflammatory cytokine overproduction and neurotoxicity is poorly understood. In the current studies, we used primary microglia from wild type (WT) and p38β knockout (KO) mice in co-culture with WT neurons, and measured proinflammatory cytokines and neuron death after LPS insult. We also measured neuroinflammatory responses in vivo in WT and p38β KO mice after administration of LPS by intraperitoneal or intracerebroventricular injection. WT and p38β KO microglia/neuron co-cultures showed similar levels of TNFα and IL-1β production in response to LPS treatment, and no differences in LPS-induced neurotoxicity. The in vitro results were confirmed in vivo, where levels of TNFα and IL-1β in the CNS were not significantly different between WT or p38β KO mice after LPS insult. Our results suggest that, similar to peripheral inflammation, p38α is critical but p38β MAPK is dispensable in the brain in regards to proinflammatory cytokine production and neurotoxicity induced by LPS inflammatory insult.
AB - The p38 MAPK pathway plays a key role in regulating the production of proinflammatory cytokines, such as TNFα and IL-1β, in peripheral inflammatory disorders. There are four major isoforms of p38 MAPK (p38α, β, δ, γ), with p38α and p38β the targets of most p38 MAPK inhibitor drugs. Our previous studies demonstrated that the p38α MAPK isoform is an important contributor to stressor-induced proinflammatory cytokine up-regulation and neurotoxicity in the brain. However, the potential role of the p38β MAPK isoform in CNS proinflammatory cytokine overproduction and neurotoxicity is poorly understood. In the current studies, we used primary microglia from wild type (WT) and p38β knockout (KO) mice in co-culture with WT neurons, and measured proinflammatory cytokines and neuron death after LPS insult. We also measured neuroinflammatory responses in vivo in WT and p38β KO mice after administration of LPS by intraperitoneal or intracerebroventricular injection. WT and p38β KO microglia/neuron co-cultures showed similar levels of TNFα and IL-1β production in response to LPS treatment, and no differences in LPS-induced neurotoxicity. The in vitro results were confirmed in vivo, where levels of TNFα and IL-1β in the CNS were not significantly different between WT or p38β KO mice after LPS insult. Our results suggest that, similar to peripheral inflammation, p38α is critical but p38β MAPK is dispensable in the brain in regards to proinflammatory cytokine production and neurotoxicity induced by LPS inflammatory insult.
UR - http://www.scopus.com/inward/record.url?scp=84874024590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874024590&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0056852
DO - 10.1371/journal.pone.0056852
M3 - Article
C2 - 23457629
AN - SCOPUS:84874024590
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 2
M1 - e56852
ER -