Design and Analysis of a Long-Stroke Planar Switched Reluctance Motor for Positioning Applications

Su Dan Huang, Guang Zhong Cao, Yeping Peng, Chao Wu, Deliang Liang, Jiangbiao He

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

This paper presents the design, control, and experimental performance evaluation of a long-stroke planar switched reluctance motor (PSRM) for positioning applications. Based on comprehensive consideration of the electromagnetic and mechanical characteristics of the PSRM, a motor design is first developed to reduce the force ripple and deformation. A control scheme with LuGre friction compensation is then proposed to improve the positioning accuracy of the PSRM. Furthermore, this control scheme is proven to ensure the stable motion of the PSRM system. Additionally, the response speed and steady-state error of the PSRM system with this control scheme are theoretically analyzed. Finally, the experimental results are presented and analyzed. The effectiveness of the precision long-stroke motion of the PSRM and its promise for use in precision positioning applications are verified experimentally.

Original languageEnglish
Article number8640028
Pages (from-to)22976-22987
Number of pages12
JournalIEEE Access
Volume7
DOIs
StatePublished - 2019

Bibliographical note

Funding Information:
This work was supported in part by the National Natural Science Foundation of China under Grant NSFC 51677120, Grant NSFC U1813212, and Grant NSFC 51275312, in part by the Natural Science Foundation of Guangdong Province, China, under Grant 2017A030310460 and Grant 2018A030310522, in part by the Shenzhen Government Fund under Grant 20170919104246276, Grant KJYY20160428170944786, and Grant JCYJ20160520175515548, and in part by the Fundamental Research Funds for the Shenzhen University under Grant 2017039.

Publisher Copyright:
© 2013 IEEE.

Keywords

  • Motion control
  • planar motor
  • precision positioning
  • switched reluctance motor

ASJC Scopus subject areas

  • Computer Science (all)
  • Materials Science (all)
  • Engineering (all)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design and Analysis of a Long-Stroke Planar Switched Reluctance Motor for Positioning Applications'. Together they form a unique fingerprint.

Cite this