Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production

Patrick Erbland, Sarah Caron, Michael Peterson, Andrei Alyokhin

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Microalgae feed production is a major cost in bivalve aquaculture. Its efficiency is increased by scaling it up under automated control of environmental conditions. The initial cost of commercially available systems can be prohibitive. Therefore, a large volume full-scale photobioreactor built of low-cost, readily available materials was developed and tested. A cone-bottom, polyethylene tank was internally illuminated with submersible fluorescent lamps and equipped with a monitoring and control system that measured temperature, pH and optical density of the microalgal culture. Injection of CO2 was automated to maintain pH within a target range. System performance was evaluated by growing four batch cultures of Tetraselmis chuii. Temperature inside the photobioreactor was 29.5 ± 2.38 °C (mean ± SD, range 21−35 °C) and pH was 7.56 ± 0.87 (mean ± SD, range 5.29–8.97). Optimal harvest time was after 300 h (12.5 days) of growth, yielding 1700 L of microalgae at a density of 2500 cells/ μl (1200 cells/ μl/ m2 illuminated surface area). With 24 h illumination, the fluorescent lights, air pump and monitoring/ control device consumed 14.9, 1.9 and 0.1kwh/ day, respectively. Assuming the microalgae are harvested at their optimal density after 12.5 days, each batch would consume 211kwh or 0.124kwh/ liter. The photobioreactor described provides an economical option for growing large amounts of microalgae for aquaculture feed and other purposes.

Original languageEnglish
Article number102103
JournalAquacultural Engineering
StatePublished - Aug 2020

Bibliographical note

Funding Information:
This work was supported by the National Science Foundation Award No. 1534772. Aaron Buzza, Stephen Abbadassa, Alex Cheney, Roman Wlodkowski, and Thea King provided technical assistance.

Publisher Copyright:
© 2020 Elsevier B.V.


  • Aquaculture feed
  • Batch culture
  • Microalgae
  • Photobioreactor
  • Tetraselmischuii

ASJC Scopus subject areas

  • Aquatic Science


Dive into the research topics of 'Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production'. Together they form a unique fingerprint.

Cite this